SentenceTransformer based on sentence-transformers/multi-qa-mpnet-base-dot-v1

This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-mpnet-base-dot-v1 on the PiC/phrase_similarity dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Deehan1866/finetuned-sentence-transformers-multi-qa-mpnet-base-dot-v1")
# Run inference
sentences = [
    "She wants to write about Keima but suffers a major case of writer's block.",
    "She wants to write about Keima but suffers a huge occurrence of writer's block.",
    'specific medical status of movement and the general condition of movement both are conditions under which contradictions can move.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.681
cosine_accuracy_threshold 0.8657
cosine_f1 0.7373
cosine_f1_threshold 0.5984
cosine_precision 0.6161
cosine_recall 0.918
cosine_ap 0.7183
dot_accuracy 0.678
dot_accuracy_threshold 35.8649
dot_f1 0.7362
dot_f1_threshold 26.9072
dot_precision 0.6145
dot_recall 0.918
dot_ap 0.6677
manhattan_accuracy 0.682
manhattan_accuracy_threshold 75.963
manhattan_f1 0.7362
manhattan_f1_threshold 128.1774
manhattan_precision 0.6182
manhattan_recall 0.91
manhattan_ap 0.7193
euclidean_accuracy 0.682
euclidean_accuracy_threshold 3.4474
euclidean_f1 0.7362
euclidean_f1_threshold 6.0247
euclidean_precision 0.6145
euclidean_recall 0.918
euclidean_ap 0.7195
max_accuracy 0.682
max_accuracy_threshold 75.963
max_f1 0.7373
max_f1_threshold 128.1774
max_precision 0.6182
max_recall 0.918
max_ap 0.7195

Training Details

Training Dataset

PiC/phrase_similarity

  • Dataset: PiC/phrase_similarity at fc67ce7
  • Size: 7,004 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 12 tokens
    • mean: 26.35 tokens
    • max: 57 tokens
    • min: 12 tokens
    • mean: 26.89 tokens
    • max: 58 tokens
    • 0: ~48.80%
    • 1: ~51.20%
  • Samples:
    sentence1 sentence2 label
    newly formed camp is released from the membrane and diffuses across the intracellular space where it serves to activate pka. recently made encampment is released from the membrane and diffuses across the intracellular space where it serves to activate pka. 0
    According to one data, in 1910, on others – in 1915, the mansion became Natalya Dmitriyevna Shchuchkina's property. According to a particular statistic, in 1910, on others – in 1915, the mansion became Natalya Dmitriyevna Shchuchkina's property. 1
    Note that Fact 1 does not assume any particular structure on the set formula_65. Note that Fact 1 does not assume any specific edifice on the set formula_65. 0
  • Loss: SoftmaxLoss

Evaluation Dataset

PiC/phrase_similarity

  • Dataset: PiC/phrase_similarity at fc67ce7
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string int
    details
    • min: 9 tokens
    • mean: 26.21 tokens
    • max: 61 tokens
    • min: 10 tokens
    • mean: 26.8 tokens
    • max: 61 tokens
    • 0: ~50.00%
    • 1: ~50.00%
  • Samples:
    sentence1 sentence2 label
    after theo's apparent death, she decides to leave first colony and ends up traveling with the apostles. after theo's apparent death, she decides to leave original settlement and ends up traveling with the apostles. 0
    The guard assigned to Vivian leaves her to prevent the robbery, allowing her to connect to the bank's network. The guard assigned to Vivian leaves her to prevent the robbery, allowing her to connect to the bank's locations. 0
    Two days later Louis XVI banished Necker by a "lettre de cachet" for his very public exchange of pamphlets. Two days later Louis XVI banished Necker by a "lettre de cachet" for his very free forum of pamphlets. 0
  • Loss: SoftmaxLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss quora-duplicates-dev_max_ap
0 0 - - 0.6564
0.2283 100 - 0.6941 0.6565
0.4566 200 - 0.6899 0.6713
0.6849 300 - 0.6467 0.7247
0.9132 400 - 0.5957 0.7231
1.1416 500 0.6571 0.6093 0.7044
1.3699 600 - 0.5578 0.7195
1.5982 700 - 0.5626 0.7372
1.8265 800 - 0.5790 0.7413
2.0548 900 - 0.5648 0.7405
2.2831 1000 0.519 0.5820 0.7467
2.5114 1100 - 0.5976 0.7455
2.7397 1200 - 0.6026 0.7335
2.9680 1300 - 0.6231 0.7422
3.1963 1400 - 0.6514 0.7376
3.4247 1500 0.3903 0.6695 0.7379
3.6530 1600 - 0.6610 0.7339
3.8813 1700 - 0.6811 0.7318
4.1096 1800 - 0.7205 0.7274
4.3379 1900 - 0.7333 0.7332
4.5662 2000 0.3036 0.7353 0.7323
4.7945 2100 - 0.7293 0.7322
5.0 2190 - - 0.7195
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.10
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.3
  • PyTorch: 2.2.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers and SoftmaxLoss

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
16
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Deehan1866/finetuned-sentence-transformers-multi-qa-mpnet-base-dot-v1

Finetuned
(9)
this model

Dataset used to train Deehan1866/finetuned-sentence-transformers-multi-qa-mpnet-base-dot-v1

Evaluation results