Edit model card

Visualize in Weights & Biases

ourData_train

This model is a fine-tuned version of Bisher/wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0655
  • Accuracy: 0.9790
  • Precision: 0.9806
  • Recall: 0.9790
  • F1: 0.9795
  • Tp: 518
  • Tn: 3313
  • Fn: 14
  • Fp: 68
  • Eer: 0.0216
  • Min Tdcf: 0.0069
  • Auc Roc: 0.9984

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Tp Tn Fn Fp Eer Min Tdcf Auc Roc
2.0925 0.0816 5 2.4908 0.3095 0.7455 0.3095 0.3596 376 835 156 2546 0.5167 0.0499 0.4827
1.8849 0.1633 10 1.8190 0.4613 0.7686 0.4613 0.5381 303 1502 229 1879 0.4874 0.05 0.5170
1.1783 0.2449 15 0.9851 0.3330 0.8128 0.3330 0.3755 455 848 77 2533 0.3856 0.0499 0.6498
0.661 0.3265 20 0.5800 0.8684 0.8702 0.8684 0.8693 283 3115 249 266 0.2256 0.0446 0.8570
0.5967 0.4082 25 0.4366 0.8433 0.9017 0.8433 0.8609 448 2852 84 529 0.1559 0.0338 0.9265
0.3993 0.4898 30 0.2574 0.8919 0.9281 0.8919 0.9020 488 3002 44 379 0.0973 0.0228 0.9650
0.25 0.5714 35 0.1732 0.9422 0.9512 0.9422 0.9449 487 3200 45 181 0.0636 0.0147 0.9811
0.2353 0.6531 40 0.3041 0.9540 0.9526 0.9540 0.9529 413 3320 119 61 0.0769 0.0177 0.9787
0.1748 0.7347 45 0.1481 0.9601 0.9645 0.9601 0.9614 499 3258 33 123 0.0515 0.0126 0.9904
0.1273 0.8163 50 0.1373 0.9698 0.9702 0.9698 0.9700 479 3316 53 65 0.0451 0.0117 0.9939
0.143 0.8980 55 0.2027 0.9640 0.9635 0.9640 0.9637 453 3319 79 62 0.0545 0.0130 0.9910
0.1021 0.9796 60 0.1321 0.9701 0.9710 0.9701 0.9704 488 3308 44 73 0.0494 0.0101 0.9939
0.0694 1.0612 65 0.1845 0.9612 0.9626 0.9612 0.9617 475 3286 57 95 0.0564 0.0123 0.9906
0.0665 1.1429 70 0.1669 0.9681 0.9682 0.9681 0.9681 473 3315 59 66 0.0447 0.0116 0.9940
0.069 1.2245 75 0.1528 0.9691 0.9698 0.9691 0.9694 483 3309 49 72 0.0429 0.0114 0.9950
0.042 1.3061 80 0.1797 0.9693 0.9701 0.9693 0.9696 485 3308 47 73 0.0438 0.0103 0.9946
0.0689 1.3878 85 0.1625 0.9711 0.9718 0.9711 0.9714 488 3312 44 69 0.0399 0.0106 0.9956
0.0739 1.4694 90 0.0861 0.9750 0.9768 0.9750 0.9755 512 3303 20 78 0.0282 0.0080 0.9976
0.0556 1.5510 95 0.1952 0.9778 0.9775 0.9778 0.9775 474 3352 58 29 0.0358 0.0095 0.9963
0.056 1.6327 100 0.1888 0.9767 0.9764 0.9767 0.9765 472 3350 60 31 0.0364 0.0087 0.9959
0.0312 1.7143 105 0.1572 0.9783 0.9781 0.9783 0.9781 482 3346 50 35 0.0376 0.0088 0.9962
0.0532 1.7959 110 0.1333 0.9775 0.9778 0.9775 0.9776 494 3331 38 50 0.0338 0.0088 0.9967
0.0575 1.8776 115 0.0958 0.9798 0.9805 0.9798 0.9800 507 3327 25 54 0.0301 0.0080 0.9976
0.0624 1.9592 120 0.0655 0.9790 0.9806 0.9790 0.9795 518 3313 14 68 0.0216 0.0069 0.9984

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for DeepFake-Audio-Rangers/DeepfakeDetect_wav2vec2

Evaluation results