Update README.md
Browse files
README.md
CHANGED
@@ -68,7 +68,7 @@ from datasets import load_dataset
|
|
68 |
|
69 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
70 |
|
71 |
-
test_dataset = load_dataset("common_voice", "lt", split="test[:2%]")
|
72 |
|
73 |
processor = Wav2Vec2Processor.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuanian")
|
74 |
|
@@ -82,11 +82,11 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
82 |
|
83 |
def speech_file_to_array_fn(batch):
|
84 |
|
85 |
-
|
86 |
|
87 |
-
|
88 |
|
89 |
-
|
90 |
|
91 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
92 |
|
@@ -94,7 +94,7 @@ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tens
|
|
94 |
|
95 |
with torch.no_grad():
|
96 |
|
97 |
-
|
98 |
|
99 |
predicted_ids = torch.argmax(logits, dim=-1)
|
100 |
|
@@ -130,7 +130,7 @@ model = Wav2Vec2ForCTC.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuan
|
|
130 |
|
131 |
model.to("cuda")
|
132 |
|
133 |
-
chars_to_ignore_regex = '[
|
134 |
|
135 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
136 |
|
@@ -140,13 +140,13 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
140 |
|
141 |
def speech_file_to_array_fn(batch):
|
142 |
|
143 |
-
|
144 |
|
145 |
-
|
146 |
|
147 |
-
|
148 |
|
149 |
-
|
150 |
|
151 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
152 |
|
@@ -156,17 +156,17 @@ test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
156 |
|
157 |
def evaluate(batch):
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
164 |
|
165 |
pred_ids = torch.argmax(logits, dim=-1)
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
170 |
|
171 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
172 |
|
|
|
68 |
|
69 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
70 |
|
71 |
+
test_dataset = load_dataset("common_voice", "lt", split="test[:2%]")
|
72 |
|
73 |
processor = Wav2Vec2Processor.from_pretrained("DeividasM/wav2vec2-large-xlsr-53-lithuanian")
|
74 |
|
|
|
82 |
|
83 |
def speech_file_to_array_fn(batch):
|
84 |
|
85 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
86 |
|
87 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
88 |
|
89 |
+
\treturn batch
|
90 |
|
91 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
92 |
|
|
|
94 |
|
95 |
with torch.no_grad():
|
96 |
|
97 |
+
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
98 |
|
99 |
predicted_ids = torch.argmax(logits, dim=-1)
|
100 |
|
|
|
130 |
|
131 |
model.to("cuda")
|
132 |
|
133 |
+
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
|
134 |
|
135 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
136 |
|
|
|
140 |
|
141 |
def speech_file_to_array_fn(batch):
|
142 |
|
143 |
+
\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
144 |
|
145 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
146 |
|
147 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
148 |
|
149 |
+
\treturn batch
|
150 |
|
151 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
152 |
|
|
|
156 |
|
157 |
def evaluate(batch):
|
158 |
|
159 |
+
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
160 |
|
161 |
+
\twith torch.no_grad():
|
162 |
|
163 |
+
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
164 |
|
165 |
pred_ids = torch.argmax(logits, dim=-1)
|
166 |
|
167 |
+
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
168 |
|
169 |
+
\treturn batch
|
170 |
|
171 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
172 |
|