metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-finetuned-en-to-fr
results: []
t5-small-finetuned-en-to-fr
This model is a fine-tuned version of Demosthene-OR/t5-small-finetuned-en-to-fr on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2463
- Bleu: 61.4528
- Gen Len: 8.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
No log | 1.0 | 1 | 0.7997 | 52.5642 | 6.6667 |
No log | 2.0 | 2 | 0.7828 | 52.5642 | 6.6667 |
No log | 3.0 | 3 | 0.7665 | 52.5642 | 6.6667 |
No log | 4.0 | 4 | 0.7499 | 52.5642 | 6.6667 |
No log | 5.0 | 5 | 0.7360 | 52.5642 | 6.6667 |
No log | 6.0 | 6 | 0.7227 | 52.5642 | 6.6667 |
No log | 7.0 | 7 | 0.7083 | 52.5642 | 6.6667 |
No log | 8.0 | 8 | 0.6948 | 52.5642 | 6.6667 |
No log | 9.0 | 9 | 0.6811 | 52.5642 | 6.6667 |
No log | 10.0 | 10 | 0.6676 | 52.5642 | 6.6667 |
No log | 11.0 | 11 | 0.6547 | 52.5642 | 6.6667 |
No log | 12.0 | 12 | 0.6421 | 52.5642 | 6.6667 |
No log | 13.0 | 13 | 0.6299 | 52.5642 | 6.6667 |
No log | 14.0 | 14 | 0.6185 | 52.5642 | 6.6667 |
No log | 15.0 | 15 | 0.6082 | 52.5642 | 6.6667 |
No log | 16.0 | 16 | 0.5977 | 52.5642 | 6.6667 |
No log | 17.0 | 17 | 0.5877 | 52.5642 | 6.6667 |
No log | 18.0 | 18 | 0.5784 | 52.5642 | 6.6667 |
No log | 19.0 | 19 | 0.5687 | 52.5642 | 6.6667 |
No log | 20.0 | 20 | 0.5588 | 52.5642 | 6.6667 |
No log | 21.0 | 21 | 0.5496 | 52.5642 | 6.6667 |
No log | 22.0 | 22 | 0.5406 | 52.5642 | 6.6667 |
No log | 23.0 | 23 | 0.5311 | 52.5642 | 6.6667 |
No log | 24.0 | 24 | 0.5216 | 52.5642 | 6.6667 |
No log | 25.0 | 25 | 0.5124 | 52.5642 | 6.6667 |
No log | 26.0 | 26 | 0.5036 | 52.5642 | 6.6667 |
No log | 27.0 | 27 | 0.4951 | 52.5642 | 6.6667 |
No log | 28.0 | 28 | 0.4867 | 61.4528 | 8.0 |
No log | 29.0 | 29 | 0.4786 | 61.4528 | 8.0 |
No log | 30.0 | 30 | 0.4705 | 61.4528 | 8.0 |
No log | 31.0 | 31 | 0.4626 | 61.4528 | 8.0 |
No log | 32.0 | 32 | 0.4547 | 61.4528 | 8.0 |
No log | 33.0 | 33 | 0.4470 | 61.4528 | 8.0 |
No log | 34.0 | 34 | 0.4392 | 61.4528 | 8.0 |
No log | 35.0 | 35 | 0.4317 | 61.4528 | 8.0 |
No log | 36.0 | 36 | 0.4241 | 61.4528 | 8.0 |
No log | 37.0 | 37 | 0.4169 | 61.4528 | 8.0 |
No log | 38.0 | 38 | 0.4103 | 61.4528 | 8.0 |
No log | 39.0 | 39 | 0.4038 | 61.4528 | 8.0 |
No log | 40.0 | 40 | 0.3975 | 61.4528 | 8.0 |
No log | 41.0 | 41 | 0.3915 | 61.4528 | 8.0 |
No log | 42.0 | 42 | 0.3858 | 61.4528 | 8.0 |
No log | 43.0 | 43 | 0.3803 | 61.4528 | 8.0 |
No log | 44.0 | 44 | 0.3748 | 61.4528 | 8.0 |
No log | 45.0 | 45 | 0.3696 | 61.4528 | 8.0 |
No log | 46.0 | 46 | 0.3645 | 61.4528 | 8.0 |
No log | 47.0 | 47 | 0.3596 | 61.4528 | 8.0 |
No log | 48.0 | 48 | 0.3548 | 61.4528 | 8.0 |
No log | 49.0 | 49 | 0.3504 | 61.4528 | 8.0 |
No log | 50.0 | 50 | 0.3460 | 61.4528 | 8.0 |
No log | 51.0 | 51 | 0.3419 | 61.4528 | 8.0 |
No log | 52.0 | 52 | 0.3379 | 61.4528 | 8.0 |
No log | 53.0 | 53 | 0.3341 | 61.4528 | 8.0 |
No log | 54.0 | 54 | 0.3304 | 61.4528 | 8.0 |
No log | 55.0 | 55 | 0.3267 | 61.4528 | 8.0 |
No log | 56.0 | 56 | 0.3232 | 61.4528 | 8.0 |
No log | 57.0 | 57 | 0.3197 | 61.4528 | 8.0 |
No log | 58.0 | 58 | 0.3163 | 61.4528 | 8.0 |
No log | 59.0 | 59 | 0.3130 | 61.4528 | 8.0 |
No log | 60.0 | 60 | 0.3096 | 61.4528 | 8.0 |
No log | 61.0 | 61 | 0.3064 | 61.4528 | 8.0 |
No log | 62.0 | 62 | 0.3032 | 61.4528 | 8.0 |
No log | 63.0 | 63 | 0.3001 | 61.4528 | 8.0 |
No log | 64.0 | 64 | 0.2970 | 61.4528 | 8.0 |
No log | 65.0 | 65 | 0.2940 | 61.4528 | 8.0 |
No log | 66.0 | 66 | 0.2912 | 61.4528 | 8.0 |
No log | 67.0 | 67 | 0.2885 | 61.4528 | 8.0 |
No log | 68.0 | 68 | 0.2859 | 61.4528 | 8.0 |
No log | 69.0 | 69 | 0.2834 | 61.4528 | 8.0 |
No log | 70.0 | 70 | 0.2810 | 61.4528 | 8.0 |
No log | 71.0 | 71 | 0.2788 | 61.4528 | 8.0 |
No log | 72.0 | 72 | 0.2766 | 61.4528 | 8.0 |
No log | 73.0 | 73 | 0.2745 | 61.4528 | 8.0 |
No log | 74.0 | 74 | 0.2725 | 61.4528 | 8.0 |
No log | 75.0 | 75 | 0.2707 | 61.4528 | 8.0 |
No log | 76.0 | 76 | 0.2689 | 61.4528 | 8.0 |
No log | 77.0 | 77 | 0.2671 | 61.4528 | 8.0 |
No log | 78.0 | 78 | 0.2655 | 61.4528 | 8.0 |
No log | 79.0 | 79 | 0.2639 | 61.4528 | 8.0 |
No log | 80.0 | 80 | 0.2624 | 61.4528 | 8.0 |
No log | 81.0 | 81 | 0.2609 | 61.4528 | 8.0 |
No log | 82.0 | 82 | 0.2594 | 61.4528 | 8.0 |
No log | 83.0 | 83 | 0.2580 | 61.4528 | 8.0 |
No log | 84.0 | 84 | 0.2567 | 61.4528 | 8.0 |
No log | 85.0 | 85 | 0.2554 | 61.4528 | 8.0 |
No log | 86.0 | 86 | 0.2543 | 61.4528 | 8.0 |
No log | 87.0 | 87 | 0.2532 | 61.4528 | 8.0 |
No log | 88.0 | 88 | 0.2522 | 61.4528 | 8.0 |
No log | 89.0 | 89 | 0.2512 | 61.4528 | 8.0 |
No log | 90.0 | 90 | 0.2504 | 61.4528 | 8.0 |
No log | 91.0 | 91 | 0.2496 | 61.4528 | 8.0 |
No log | 92.0 | 92 | 0.2489 | 61.4528 | 8.0 |
No log | 93.0 | 93 | 0.2483 | 61.4528 | 8.0 |
No log | 94.0 | 94 | 0.2478 | 61.4528 | 8.0 |
No log | 95.0 | 95 | 0.2474 | 61.4528 | 8.0 |
No log | 96.0 | 96 | 0.2470 | 61.4528 | 8.0 |
No log | 97.0 | 97 | 0.2468 | 61.4528 | 8.0 |
No log | 98.0 | 98 | 0.2465 | 61.4528 | 8.0 |
No log | 99.0 | 99 | 0.2464 | 61.4528 | 8.0 |
No log | 100.0 | 100 | 0.2463 | 61.4528 | 8.0 |
Framework versions
- Transformers 4.30.0
- Pytorch 2.0.1
- Datasets 2.13.0
- Tokenizers 0.13.2