|
--- |
|
license: [apache-2.0, gemma] |
|
datasets: |
|
- traintogpb/aihub-koen-translation-integrated-base-10m |
|
language: |
|
- ko |
|
- en |
|
pipeline_tag: translation |
|
tags: |
|
- gemma |
|
--- |
|
# Gemago Model Card |
|
|
|
**Original Gemma Model Page**: [Gemma](https://ai.google.dev/gemma/docs) |
|
|
|
**Model Page On Github**: [Gemago](https://github.com/deveworld/Gemago) |
|
|
|
**Resources and Technical Documentation**: |
|
* [Blog(Korean)](https://blog.worldsw.dev/tag/gemago/) |
|
* [Original Google's Gemma-2B](https://huggingface.co/google/gemma-2b) |
|
* [Training Code @ Github: Gemma-EasyLM (Orginial by Beomi)](https://github.com/deveworld/Gemma-EasyLM/tree/2b) |
|
|
|
**Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) |
|
|
|
**Authors**: Orginal Google, Fine-tuned by DevWorld |
|
|
|
## Model Information |
|
|
|
Translate English/Korean to Korean/English. |
|
|
|
### Description |
|
|
|
Gemago is a lightweight English-and-Korean translation model based on Gemma. |
|
|
|
### Context Length |
|
Models are trained on a context length of 8192 tokens, which is equivalent to Gemma. |
|
|
|
### Usage |
|
|
|
Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U keras keras-nlp`, then copy the snippet from the section that is relevant for your usecase. |
|
|
|
#### Running the model with transformers |
|
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/deveworld/Gemago/blob/main/Gemago_2b_Infer.ipynb) |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("devworld/gemago-2b") |
|
model = AutoModelForCausalLM.from_pretrained("devworld/gemago-2b") |
|
|
|
def gen(text, max_length): |
|
input_ids = tokenizer(text, return_tensors="pt") |
|
outputs = model.generate(**input_ids, max_length=max_length) |
|
return tokenizer.decode(outputs[0]) |
|
|
|
def e2k(e): |
|
input_text = f"English:\n{e}\n\nKorean:\n" |
|
return gen(input_text, 1024) |
|
|
|
def k2e(k): |
|
input_text = f"Korean:\n{k}\n\nEnglish:\n" |
|
return gen(input_text, 1024) |
|
``` |