wav2vec2-xls-r-1b-ft-btb-ccv-cy
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset.
It achieves the following results on the test set:
- Wer: 0.4416104502872399
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 200000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.5324 | 0.0383 | 1000 | inf | 0.9162 |
1.3344 | 0.0765 | 2000 | inf | 0.9002 |
1.2517 | 0.1148 | 3000 | inf | 0.8682 |
1.2045 | 0.1531 | 4000 | inf | 0.8538 |
1.1725 | 0.1913 | 5000 | inf | 0.8389 |
1.1243 | 0.2296 | 6000 | inf | 0.8252 |
1.1034 | 0.2679 | 7000 | inf | 0.8147 |
1.0795 | 0.3061 | 8000 | inf | 0.8072 |
1.057 | 0.3444 | 9000 | inf | 0.7895 |
1.0169 | 0.3827 | 10000 | inf | 0.7693 |
1.0014 | 0.4209 | 11000 | inf | 0.7761 |
0.9994 | 0.4592 | 12000 | inf | 0.7627 |
0.9603 | 0.4975 | 13000 | inf | 0.7659 |
0.947 | 0.5357 | 14000 | inf | 0.7499 |
0.9201 | 0.5740 | 15000 | inf | 0.7423 |
0.9243 | 0.6123 | 16000 | inf | 0.7311 |
0.8956 | 0.6505 | 17000 | inf | 0.7158 |
0.9164 | 0.6888 | 18000 | inf | 0.7104 |
0.8813 | 0.7271 | 19000 | inf | 0.7138 |
0.8627 | 0.7653 | 20000 | inf | 0.6857 |
0.8618 | 0.8036 | 21000 | inf | 0.6947 |
0.8635 | 0.8419 | 22000 | inf | 0.6986 |
0.8396 | 0.8801 | 23000 | inf | 0.6784 |
0.8303 | 0.9184 | 24000 | inf | 0.6918 |
0.8217 | 0.9567 | 25000 | inf | 0.6671 |
0.8161 | 0.9949 | 26000 | inf | 0.6990 |
0.7745 | 1.0332 | 27000 | inf | 0.6596 |
0.7775 | 1.0715 | 28000 | inf | 0.6444 |
0.7677 | 1.1098 | 29000 | inf | 0.6411 |
0.7651 | 1.1480 | 30000 | inf | 0.6360 |
0.7495 | 1.1863 | 31000 | inf | 0.6383 |
0.7584 | 1.2246 | 32000 | inf | 0.6299 |
0.7467 | 1.2628 | 33000 | inf | 0.6328 |
0.7321 | 1.3011 | 34000 | inf | 0.6344 |
0.7458 | 1.3394 | 35000 | inf | 0.6259 |
0.7224 | 1.3776 | 36000 | inf | 0.6136 |
0.7149 | 1.4159 | 37000 | inf | 0.6039 |
0.7073 | 1.4542 | 38000 | inf | 0.6153 |
0.7121 | 1.4924 | 39000 | inf | 0.6036 |
0.7123 | 1.5307 | 40000 | inf | 0.6111 |
0.7059 | 1.5690 | 41000 | inf | 0.5991 |
0.6765 | 1.6072 | 42000 | inf | 0.5985 |
0.6928 | 1.6455 | 43000 | inf | 0.5948 |
0.6849 | 1.6838 | 44000 | inf | 0.6151 |
0.694 | 1.7220 | 45000 | inf | 0.5855 |
0.6786 | 1.7603 | 46000 | inf | 0.5924 |
0.6703 | 1.7986 | 47000 | inf | 0.5924 |
0.6573 | 1.8368 | 48000 | inf | 0.5716 |
0.6672 | 1.8751 | 49000 | inf | 0.5795 |
0.6401 | 1.9134 | 50000 | inf | 0.5739 |
0.6621 | 1.9516 | 51000 | inf | 0.5727 |
0.644 | 1.9899 | 52000 | inf | 0.5558 |
0.5941 | 2.0282 | 53000 | inf | 0.5625 |
0.5991 | 2.0664 | 54000 | inf | 0.5510 |
0.6077 | 2.1047 | 55000 | inf | 0.5534 |
0.5878 | 2.1430 | 56000 | inf | 0.5430 |
0.5875 | 2.1812 | 57000 | inf | 0.5503 |
0.5898 | 2.2195 | 58000 | inf | 0.5392 |
0.597 | 2.2578 | 59000 | inf | 0.5391 |
0.5769 | 2.2960 | 60000 | inf | 0.5348 |
0.5669 | 2.3343 | 61000 | inf | 0.5410 |
0.577 | 2.3726 | 62000 | inf | 0.5350 |
0.5675 | 2.4108 | 63000 | inf | 0.5298 |
0.5665 | 2.4491 | 64000 | inf | 0.5333 |
0.5782 | 2.4874 | 65000 | inf | 0.5259 |
0.5748 | 2.5256 | 66000 | inf | 0.5226 |
0.5813 | 2.5639 | 67000 | inf | 0.5234 |
0.5698 | 2.6022 | 68000 | inf | 0.5208 |
0.5606 | 2.6404 | 69000 | inf | 0.5123 |
0.5654 | 2.6787 | 70000 | inf | 0.5160 |
0.5657 | 2.7170 | 71000 | inf | 0.5297 |
0.5631 | 2.7552 | 72000 | inf | 0.5190 |
0.5442 | 2.7935 | 73000 | inf | 0.5100 |
0.5489 | 2.8318 | 74000 | inf | 0.5116 |
0.541 | 2.8700 | 75000 | inf | 0.5017 |
0.5384 | 2.9083 | 76000 | inf | 0.5002 |
0.5508 | 2.9466 | 77000 | inf | 0.5109 |
0.5174 | 2.9848 | 78000 | inf | 0.5033 |
0.4844 | 3.0231 | 79000 | inf | 0.4903 |
0.4768 | 3.0614 | 80000 | inf | 0.5 |
0.4804 | 3.0996 | 81000 | inf | 0.4968 |
0.4873 | 3.1379 | 82000 | inf | 0.4874 |
0.4805 | 3.1762 | 83000 | inf | 0.4860 |
0.4763 | 3.2144 | 84000 | inf | 0.4849 |
0.483 | 3.2527 | 85000 | inf | 0.4902 |
0.473 | 3.2910 | 86000 | inf | 0.4808 |
0.4747 | 3.3293 | 87000 | inf | 0.4906 |
0.4722 | 3.3675 | 88000 | inf | 0.4765 |
0.4662 | 3.4058 | 89000 | inf | 0.4763 |
0.4683 | 3.4441 | 90000 | inf | 0.4785 |
0.4686 | 3.4823 | 91000 | inf | 0.4726 |
0.4519 | 3.5206 | 92000 | inf | 0.4771 |
0.4509 | 3.5589 | 93000 | inf | 0.4737 |
0.4679 | 3.5971 | 94000 | inf | 0.4712 |
0.4693 | 3.6354 | 95000 | inf | 0.4898 |
0.4615 | 3.6737 | 96000 | inf | 0.4688 |
0.4671 | 3.7119 | 97000 | inf | 0.4681 |
0.445 | 3.7502 | 98000 | inf | 0.4604 |
0.4559 | 3.7885 | 99000 | inf | 0.4598 |
0.4514 | 3.8267 | 100000 | inf | 0.4554 |
0.4501 | 3.8650 | 101000 | inf | 0.4521 |
0.4488 | 3.9033 | 102000 | inf | 0.4569 |
0.472 | 3.9415 | 103000 | inf | 0.4532 |
0.4603 | 3.9798 | 104000 | inf | 0.4536 |
0.3935 | 4.0181 | 105000 | inf | 0.4460 |
0.3981 | 4.0563 | 106000 | inf | 0.4440 |
0.3935 | 4.0946 | 107000 | inf | 0.4461 |
0.3936 | 4.1329 | 108000 | inf | 0.4410 |
0.3902 | 4.1711 | 109000 | inf | 0.4411 |
0.388 | 4.2094 | 110000 | inf | 0.4417 |
0.393 | 4.2477 | 111000 | inf | 0.4347 |
0.3957 | 4.2859 | 112000 | inf | 0.4398 |
0.3801 | 4.3242 | 113000 | inf | 0.4380 |
0.3836 | 4.3625 | 114000 | inf | 0.4327 |
0.383 | 4.4007 | 115000 | inf | 0.4385 |
0.38 | 4.4390 | 116000 | inf | 0.4374 |
0.4004 | 4.4773 | 117000 | inf | 0.4265 |
0.3817 | 4.5155 | 118000 | inf | 0.4342 |
0.3937 | 4.5538 | 119000 | inf | 0.4295 |
0.3891 | 4.5921 | 120000 | inf | 0.4257 |
0.3883 | 4.6303 | 121000 | inf | 0.4256 |
0.3691 | 4.6686 | 122000 | inf | 0.4195 |
0.3699 | 4.7069 | 123000 | inf | 0.4273 |
0.37 | 4.7451 | 124000 | inf | 0.4203 |
0.3691 | 4.7834 | 125000 | inf | 0.4201 |
0.3701 | 4.8217 | 126000 | inf | 0.4120 |
0.3701 | 4.8599 | 127000 | inf | 0.4193 |
0.3732 | 4.8982 | 128000 | inf | 0.4195 |
0.3755 | 4.9365 | 129000 | inf | 0.4196 |
0.3778 | 4.9747 | 130000 | inf | 0.4098 |
0.3384 | 5.0130 | 131000 | inf | 0.4119 |
0.3216 | 5.0513 | 132000 | inf | 0.4103 |
0.3149 | 5.0895 | 133000 | inf | 0.4123 |
0.3162 | 5.1278 | 134000 | inf | 0.4070 |
0.3206 | 5.1661 | 135000 | inf | 0.4083 |
0.3137 | 5.2043 | 136000 | inf | 0.4067 |
0.3202 | 5.2426 | 137000 | inf | 0.4083 |
0.3076 | 5.2809 | 138000 | inf | 0.4038 |
0.3172 | 5.3191 | 139000 | inf | 0.4020 |
0.3235 | 5.3574 | 140000 | inf | 0.4031 |
0.3019 | 5.3957 | 141000 | inf | 0.3973 |
0.3085 | 5.4340 | 142000 | inf | 0.4003 |
0.3177 | 5.4722 | 143000 | inf | 0.3985 |
0.321 | 5.5105 | 144000 | inf | 0.3982 |
0.325 | 5.5488 | 145000 | inf | 0.3972 |
0.308 | 5.5870 | 146000 | inf | 0.3980 |
0.318 | 5.6253 | 147000 | inf | 0.3931 |
0.3124 | 5.6636 | 148000 | inf | 0.3936 |
0.3039 | 5.7018 | 149000 | inf | 0.3911 |
0.3028 | 5.7401 | 150000 | inf | 0.3902 |
0.3083 | 5.7784 | 151000 | inf | 0.3890 |
0.3004 | 5.8166 | 152000 | inf | 0.3894 |
0.2987 | 5.8549 | 153000 | inf | 0.3823 |
0.3048 | 5.8932 | 154000 | inf | 0.3838 |
0.2959 | 5.9314 | 155000 | inf | 0.3799 |
0.301 | 5.9697 | 156000 | inf | 0.3831 |
0.2778 | 6.0080 | 157000 | inf | 0.3792 |
0.2549 | 6.0462 | 158000 | inf | 0.3790 |
0.2596 | 6.0845 | 159000 | inf | 0.3775 |
0.2436 | 6.1228 | 160000 | inf | 0.3795 |
0.2489 | 6.1610 | 161000 | inf | 0.3765 |
0.2516 | 6.1993 | 162000 | inf | 0.3767 |
0.2565 | 6.2376 | 163000 | inf | 0.3772 |
0.2482 | 6.2758 | 164000 | inf | 0.3721 |
0.2561 | 6.3141 | 165000 | inf | 0.3740 |
0.2497 | 6.3524 | 166000 | inf | 0.3729 |
0.2544 | 6.3906 | 167000 | inf | 0.3714 |
0.2504 | 6.4289 | 168000 | inf | 0.3700 |
0.2502 | 6.4672 | 169000 | inf | 0.3710 |
0.2493 | 6.5054 | 170000 | inf | 0.3683 |
0.2586 | 6.5437 | 171000 | inf | 0.3696 |
0.2502 | 6.5820 | 172000 | inf | 0.3670 |
0.2551 | 6.6202 | 173000 | inf | 0.3681 |
0.2556 | 6.6585 | 174000 | inf | 0.3651 |
0.2539 | 6.6968 | 175000 | inf | 0.3651 |
0.2464 | 6.7350 | 176000 | inf | 0.3639 |
0.2395 | 6.7733 | 177000 | inf | 0.3624 |
0.2434 | 6.8116 | 178000 | inf | 0.3637 |
0.2384 | 6.8498 | 179000 | inf | 0.3608 |
0.2339 | 6.8881 | 180000 | inf | 0.3615 |
0.2392 | 6.9264 | 181000 | inf | 0.3608 |
0.2348 | 6.9646 | 182000 | inf | 0.3615 |
0.2232 | 7.0029 | 183000 | inf | 0.3592 |
0.213 | 7.0412 | 184000 | inf | 0.3604 |
0.2036 | 7.0794 | 185000 | inf | 0.3589 |
0.2055 | 7.1177 | 186000 | inf | 0.3585 |
0.202 | 7.1560 | 187000 | inf | 0.3559 |
0.2004 | 7.1942 | 188000 | inf | 0.3552 |
0.2049 | 7.2325 | 189000 | inf | 0.3547 |
0.2013 | 7.2708 | 190000 | inf | 0.3566 |
0.2015 | 7.3090 | 191000 | inf | 0.3547 |
0.2043 | 7.3473 | 192000 | inf | 0.3536 |
0.2023 | 7.3856 | 193000 | inf | 0.3545 |
0.2002 | 7.4238 | 194000 | inf | 0.3535 |
0.199 | 7.4621 | 195000 | inf | 0.3540 |
0.2056 | 7.5004 | 196000 | inf | 0.3539 |
0.203 | 7.5386 | 197000 | inf | 0.3534 |
0.194 | 7.5769 | 198000 | inf | 0.3531 |
0.2076 | 7.6152 | 199000 | inf | 0.3529 |
0.1931 | 7.6535 | 200000 | inf | 0.3532 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 10
Unable to determine this model's library. Check the
docs
.
Model tree for DewiBrynJones/wav2vec2-xls-r-1b-ft-btb-ccv-cy
Base model
facebook/wav2vec2-xls-r-1b