eksplorasi_model / README.md
Dhanang's picture
End of training
6f7c93f verified
|
raw
history blame
2.38 kB
metadata
license: mit
base_model: indobenchmark/indobert-base-p2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: eksplorasi_model
    results: []

eksplorasi_model

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3647
  • Accuracy: 0.8529
  • F1: 0.9153
  • Precision: 0.8710
  • Recall: 0.9643

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 17 0.3647 0.8529 0.9153 0.8710 0.9643
No log 2.0 34 0.4506 0.8529 0.9091 0.9259 0.8929
No log 3.0 51 0.5964 0.8529 0.9153 0.8710 0.9643
No log 4.0 68 0.6727 0.8235 0.8929 0.8929 0.8929
No log 5.0 85 0.6488 0.8235 0.8966 0.8667 0.9286
No log 6.0 102 0.6798 0.8529 0.9123 0.8966 0.9286
No log 7.0 119 0.7034 0.8529 0.9123 0.8966 0.9286
No log 8.0 136 0.6960 0.8529 0.9123 0.8966 0.9286
No log 9.0 153 0.7040 0.8529 0.9123 0.8966 0.9286
No log 10.0 170 0.7053 0.8529 0.9123 0.8966 0.9286

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0