Edit model card

BERT-multilingual-finetuned-CEFR_ner-3000news

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5691
  • Accuracy: 0.4044
  • Precision: 0.4949
  • Recall: 0.6593
  • F1: 0.4688

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 132 0.5657 0.3739 0.5044 0.5333 0.4050
No log 2.0 264 0.5076 0.3859 0.5011 0.5712 0.4225
No log 3.0 396 0.4845 0.3925 0.4690 0.6167 0.4351
0.4009 4.0 528 0.4981 0.3985 0.4956 0.6180 0.4514
0.4009 5.0 660 0.5136 0.3976 0.4913 0.6348 0.4570
0.4009 6.0 792 0.5092 0.4019 0.5004 0.6434 0.4655
0.4009 7.0 924 0.5235 0.4012 0.4837 0.6434 0.4555
0.1848 8.0 1056 0.5327 0.4033 0.4948 0.6519 0.4662
0.1848 9.0 1188 0.5640 0.4033 0.4920 0.6536 0.4638
0.1848 10.0 1320 0.5717 0.4031 0.4962 0.6547 0.4677
0.1848 11.0 1452 0.5667 0.4043 0.4910 0.6609 0.4666
0.1096 12.0 1584 0.5691 0.4044 0.4949 0.6593 0.4688

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
177M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DioBot2000/BERT-multilingual-finetuned-CEFR_ner-3000news

Finetuned
(500)
this model