DioBot2000's picture
End of training
5a2a823 verified
|
raw
history blame
1.86 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: FULL-3epoch-XLMRoBERTa-finetuned-CEFR_ner-60000news
    results: []

FULL-3epoch-XLMRoBERTa-finetuned-CEFR_ner-60000news

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2571
  • Accuracy: 0.3011
  • Precision: 0.7306
  • Recall: 0.6846
  • F1: 0.5945

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.9923 97 0.5290 0.2637 0.6408 0.5061 0.4053
No log 1.9949 195 0.2969 0.2962 0.7163 0.6474 0.5560
No log 2.9770 291 0.2571 0.3011 0.7306 0.6846 0.5945

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.1
  • Datasets 2.19.2
  • Tokenizers 0.19.1