metadata
license: apache-2.0
base_model: bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Frozen11-50epoch-BERT-multilingual-finetuned-CEFR_ner-10000news
results: []
Frozen11-50epoch-BERT-multilingual-finetuned-CEFR_ner-10000news
This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3983
- Accuracy: 0.2881
- Precision: 0.4062
- Recall: 0.7266
- F1: 0.4014
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.7274 | 1.0 | 500 | 0.6491 | 0.2455 | 0.4102 | 0.4821 | 0.2722 |
0.6213 | 2.0 | 1000 | 0.5746 | 0.2543 | 0.3790 | 0.5244 | 0.2899 |
0.5375 | 3.0 | 1500 | 0.5073 | 0.2626 | 0.3959 | 0.5531 | 0.3168 |
0.4721 | 4.0 | 2000 | 0.4612 | 0.2690 | 0.4067 | 0.5837 | 0.3466 |
0.4231 | 5.0 | 2500 | 0.4297 | 0.2728 | 0.3975 | 0.6080 | 0.3571 |
0.3828 | 6.0 | 3000 | 0.4104 | 0.2751 | 0.4034 | 0.6224 | 0.3628 |
0.3494 | 7.0 | 3500 | 0.3973 | 0.2769 | 0.4011 | 0.6354 | 0.3658 |
0.3223 | 8.0 | 4000 | 0.3764 | 0.2796 | 0.4004 | 0.6546 | 0.3765 |
0.2991 | 9.0 | 4500 | 0.3693 | 0.2807 | 0.4138 | 0.6578 | 0.3874 |
0.2797 | 10.0 | 5000 | 0.3661 | 0.2811 | 0.3998 | 0.6726 | 0.3811 |
0.2623 | 11.0 | 5500 | 0.3571 | 0.2826 | 0.4118 | 0.6765 | 0.3922 |
0.2476 | 12.0 | 6000 | 0.3514 | 0.2833 | 0.4063 | 0.6877 | 0.3914 |
0.2337 | 13.0 | 6500 | 0.3586 | 0.2828 | 0.4046 | 0.6849 | 0.3880 |
0.2198 | 14.0 | 7000 | 0.3480 | 0.2844 | 0.4107 | 0.6904 | 0.3960 |
0.2096 | 15.0 | 7500 | 0.3495 | 0.2847 | 0.4128 | 0.6893 | 0.3968 |
0.2007 | 16.0 | 8000 | 0.3456 | 0.2852 | 0.4106 | 0.7003 | 0.3984 |
0.1894 | 17.0 | 8500 | 0.3543 | 0.2849 | 0.4003 | 0.7058 | 0.3905 |
0.1816 | 18.0 | 9000 | 0.3532 | 0.2851 | 0.4071 | 0.7066 | 0.3966 |
0.1742 | 19.0 | 9500 | 0.3500 | 0.2857 | 0.4138 | 0.7069 | 0.4024 |
0.167 | 20.0 | 10000 | 0.3495 | 0.286 | 0.4150 | 0.7079 | 0.4047 |
0.159 | 21.0 | 10500 | 0.3599 | 0.2859 | 0.4067 | 0.7093 | 0.3973 |
0.1548 | 22.0 | 11000 | 0.3564 | 0.2863 | 0.4061 | 0.7139 | 0.3980 |
0.1492 | 23.0 | 11500 | 0.3587 | 0.2864 | 0.4081 | 0.7132 | 0.3994 |
0.1433 | 24.0 | 12000 | 0.3607 | 0.2867 | 0.4110 | 0.7148 | 0.4022 |
0.1379 | 25.0 | 12500 | 0.3593 | 0.2871 | 0.4133 | 0.7147 | 0.4045 |
0.1336 | 26.0 | 13000 | 0.3689 | 0.2866 | 0.4062 | 0.7164 | 0.3986 |
0.1296 | 27.0 | 13500 | 0.3656 | 0.2872 | 0.4056 | 0.7207 | 0.3996 |
0.1264 | 28.0 | 14000 | 0.3695 | 0.2871 | 0.4104 | 0.7177 | 0.4029 |
0.1223 | 29.0 | 14500 | 0.3700 | 0.2871 | 0.4113 | 0.7185 | 0.4041 |
0.119 | 30.0 | 15000 | 0.3732 | 0.2872 | 0.4086 | 0.7206 | 0.4016 |
0.115 | 31.0 | 15500 | 0.3765 | 0.2873 | 0.4096 | 0.7198 | 0.4030 |
0.1126 | 32.0 | 16000 | 0.3738 | 0.2878 | 0.4095 | 0.7239 | 0.4040 |
0.11 | 33.0 | 16500 | 0.3825 | 0.2874 | 0.4069 | 0.7224 | 0.4007 |
0.1071 | 34.0 | 17000 | 0.3857 | 0.2874 | 0.4029 | 0.7243 | 0.3976 |
0.105 | 35.0 | 17500 | 0.3871 | 0.2874 | 0.4069 | 0.7230 | 0.4008 |
0.104 | 36.0 | 18000 | 0.3872 | 0.2875 | 0.4046 | 0.7254 | 0.3997 |
0.1021 | 37.0 | 18500 | 0.3890 | 0.2876 | 0.4063 | 0.7236 | 0.4006 |
0.0997 | 38.0 | 19000 | 0.3886 | 0.2877 | 0.4067 | 0.7259 | 0.4017 |
0.0982 | 39.0 | 19500 | 0.3909 | 0.2877 | 0.4084 | 0.7238 | 0.4027 |
0.0964 | 40.0 | 20000 | 0.3951 | 0.2877 | 0.4076 | 0.7245 | 0.4019 |
0.0948 | 41.0 | 20500 | 0.3945 | 0.2879 | 0.4064 | 0.7258 | 0.4011 |
0.0941 | 42.0 | 21000 | 0.3919 | 0.2881 | 0.4096 | 0.7267 | 0.4044 |
0.0932 | 43.0 | 21500 | 0.3937 | 0.2879 | 0.4066 | 0.7262 | 0.4014 |
0.0922 | 44.0 | 22000 | 0.3965 | 0.2879 | 0.4091 | 0.7261 | 0.4038 |
0.0908 | 45.0 | 22500 | 0.3977 | 0.2880 | 0.4061 | 0.7271 | 0.4013 |
0.09 | 46.0 | 23000 | 0.3977 | 0.2880 | 0.4063 | 0.7263 | 0.4014 |
0.0906 | 47.0 | 23500 | 0.3978 | 0.2880 | 0.4051 | 0.7274 | 0.4005 |
0.0893 | 48.0 | 24000 | 0.3981 | 0.2881 | 0.4063 | 0.7269 | 0.4015 |
0.0887 | 49.0 | 24500 | 0.3982 | 0.2881 | 0.4067 | 0.7262 | 0.4017 |
0.0883 | 50.0 | 25000 | 0.3983 | 0.2881 | 0.4062 | 0.7266 | 0.4014 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.2.1
- Datasets 2.19.1
- Tokenizers 0.19.1