DipsankarSinha's picture
update model card README.md
d6d2d2d
|
raw
history blame
3.65 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: HO_ASR-Model_KIIT2025
    results: []

HO_ASR-Model_KIIT2025

This model is a fine-tuned version of /content/HO_ASR-Model_KIIT2025/checkpoint-6250/ on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7268
  • Wer: 0.5447

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 75
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.9609 2.0 250 2.8620 0.9958
2.3792 4.0 500 1.5657 0.8976
0.8142 6.0 750 0.8104 0.7383
0.5211 8.0 1000 0.6461 0.6508
0.4145 10.0 1250 0.5793 0.6257
0.3562 12.0 1500 0.5991 0.6315
0.3135 14.0 1750 0.5680 0.6295
0.2694 16.0 2000 0.5731 0.6139
0.2333 18.0 2250 0.6170 0.6482
0.2061 20.0 2500 0.5771 0.5852
0.1823 22.0 2750 0.5820 0.5776
0.1628 24.0 3000 0.5853 0.5793
0.1434 26.0 3250 0.6188 0.5776
0.129 28.0 3500 0.6095 0.5644
0.1185 30.0 3750 0.6210 0.5753
0.1071 32.0 4000 0.6250 0.5680
0.097 34.0 4250 0.6207 0.5636
0.0901 36.0 4500 0.6477 0.5760
0.0833 38.0 4750 0.6510 0.5666
0.0758 40.0 5000 0.6519 0.5553
0.0693 42.0 5250 0.6641 0.5549
0.0637 44.0 5500 0.6648 0.5490
0.0591 46.0 5750 0.6809 0.5535
0.0585 48.0 6000 0.6786 0.5512
0.0555 50.0 6250 0.6844 0.5516
0.0681 52.0 6500 0.6603 0.5562
0.0699 54.0 6750 0.6837 0.5565
0.0641 56.0 7000 0.6792 0.5509
0.0612 58.0 7250 0.6765 0.5508
0.0593 60.0 7500 0.6780 0.5530
0.0525 62.0 7750 0.6947 0.5460
0.0491 64.0 8000 0.7007 0.5504
0.0482 66.0 8250 0.7215 0.5572
0.0478 68.0 8500 0.7178 0.5444
0.0434 70.0 8750 0.7283 0.5465
0.042 72.0 9000 0.7203 0.5462
0.0402 74.0 9250 0.7268 0.5447

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.13.3