DipsankarSinha's picture
Upload tokenizer
0541e1d verified
|
raw
history blame
2.55 kB
metadata
base_model: facebook/wav2vec2-xls-r-300m
datasets:
  - common_voice_16_1
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-large-xls-r-300m-amharic-demo-colab
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: am
          split: test
          args: am
        metrics:
          - type: wer
            value: 0.8992661774516344
            name: Wer

wav2vec2-large-xls-r-300m-amharic-demo-colab

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6489
  • Wer: 0.8993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
12.8229 2.5 100 4.1682 1.0
4.1232 5.0 200 4.0821 1.0
4.0475 7.5 300 4.0087 1.0
3.9841 10.0 400 3.9677 1.0
3.9469 12.5 500 3.9503 1.0
3.7544 15.0 600 3.3452 1.0
2.1016 17.5 700 1.8871 0.9800
0.9969 20.0 800 1.7061 0.9813
0.6112 22.5 900 1.6420 0.9513
0.4384 25.0 1000 1.6287 0.9466
0.3355 27.5 1100 1.6593 0.9273
0.293 30.0 1200 1.6489 0.8993

Framework versions

  • Transformers 4.42.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1