jphme commited on
Commit
c5fdcce
1 Parent(s): 69a65ff
Files changed (1) hide show
  1. README.md +165 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Open-Orca/SlimOrca-Dedup
4
+ - teknium/openhermes
5
+ - meta-math/MetaMathQA
6
+ - migtissera/Synthia-v1.3
7
+ - THUDM/AgentInstruct
8
+ - LeoLM/German_Songs
9
+ - LeoLM/German_Poems
10
+ - LeoLM/OpenSchnabeltier
11
+ - bjoernp/ultrachat_de
12
+ language:
13
+ - en
14
+ library_name: transformers
15
+ pipeline_tag: text-generation
16
+ license: llama2
17
+ model_creator: DiscoResearch
18
+ model_type: llama
19
+ tags:
20
+ - goliath
21
+ - deutsch
22
+ - llama2
23
+ - discoresearch
24
+ ---
25
+
26
+
27
+ ![EM Logo](https://raw.githubusercontent.com/jphme/jpdus.github.io/master/images/discoresearch.webp)
28
+
29
+ # DiscoLM 120b (Alpha)
30
+
31
+ **DiscoLM 120b (Alpha)** is an experimental 120b model based on [Alpindale´s Goliath 120b](https://huggingface.co/alpindale/goliath-120b), a merge of different Llama2-70b models, and further finetuned on a dataset of some the most popular open-source instruction sets.
32
+ Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp).
33
+
34
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/) - we are very grateful for their support; please check out their wesbite and projects!
35
+
36
+ <img src="https://hessian.ai/wp-content/themes/hessianai/img/hessian-ai-logo.svg" width="120">
37
+
38
+ ## Table of Contents
39
+
40
+ 1. [Download](#download)
41
+ 2. [Benchmarks](#benchmarks)
42
+ 3. [Prompt Format](#prompt-format)
43
+ 4. [Dataset](#dataset)
44
+ 5. [Acknowledgements](#acknowledgements)
45
+ 6. [Contact](#contact)
46
+ 7. [About DiscoResearch](#about-discoresearch)
47
+ 8. [Disclaimer](#disclaimer)
48
+
49
+ ## Download
50
+
51
+ | Huggingface | GPTQ | GGUF | AWQ | *Base Model* |
52
+ |-------|-------|-------|-------|-------|
53
+ | [Link](https://huggingface.co/DiscoResearch/DiscoLM-120b) | soon | soon | soon | [Goliath 120b](https://huggingface.co/alpindale/goliath-120b) |
54
+
55
+ ## Benchmarks
56
+
57
+ ### Hugginface Leaderboard
58
+
59
+ This models is still an early Alpha and we can't guarantee that there isn't any contamination.
60
+ However, the average of **72.15** would earn the #2 spot on the HF leaderboard at the time of writing and the highest score for a >70b model yet.
61
+
62
+ | Metric | Value |
63
+ |-----------------------|-------|
64
+ | ARC (25-shot) | 69.54 |
65
+ | HellaSwag (10-shot) | 86.49 |
66
+ | MMLU (5-shot) | 70.32 |
67
+ | TruthfulQA (0-shot) | 61.42 |
68
+ | Winogrande (5-shot) | 83.03 |
69
+ | GSM8k (5-shot) | 68.39 |
70
+ | **Avg.** | **72.15** |
71
+
72
+ We use [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard.
73
+
74
+ ### FastEval
75
+
76
+ | Metric | Value |
77
+ |-----------------------|-------|
78
+ | GSM8K | 81.2 |
79
+ | Math | 22.3 |
80
+ | BBH | 72.9 |
81
+ | MMLU | 67.9 |
82
+ | **Avg.** | **53.3** |
83
+
84
+ ### MTBench
85
+
86
+ ```json
87
+ {
88
+ "first_turn": 8.45,
89
+ "second_turn": 7.45,
90
+ "categories": {
91
+ "writing": 9.4,
92
+ "roleplay": 8.65,
93
+ "reasoning": 6.85,
94
+ "math": 5.55,
95
+ "coding": 4.95,
96
+ "extraction": 9.15,
97
+ "stem": 9.225,
98
+ "humanities": 9.825
99
+ },
100
+ "average": 7.95
101
+ }
102
+ ```
103
+
104
+ ## Prompt Format
105
+
106
+ This model follows the ChatML format:
107
+
108
+ ```
109
+ <|im_start|>system
110
+ You are DiscoLM, a helpful assistant.
111
+ <|im_end|>
112
+ <|im_start|>user
113
+ Please tell me possible reasons to call a research collective "Disco Research"<|im_end|>
114
+ <|im_start|>assistant
115
+ ```
116
+
117
+ This formatting is also available via a pre-defined Transformers chat template, which means that lists of messages can be formatted for you with the apply_chat_template() method:
118
+
119
+ ```python
120
+ chat = [
121
+ {"role": "system", "content": "You are DiscoLM, a helpful assistant."},
122
+ {"role": "user", "content": "Please tell me possible reasons to call a research collective Disco Research"}
123
+ ]
124
+ tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
125
+ ```
126
+
127
+ If you use `tokenize=True` and `return_tensors="pt"` instead, then you will get a tokenized and formatted conversation ready to pass to `model.generate()`.
128
+
129
+ ## Dataset
130
+
131
+ The dataset curation for DiscoLM 120b followed a "brute force"/"PoC" approach, as one goal was to see whether a 120b model can "absorb" more instruction data than a 70b model.
132
+
133
+ The following datasets were used for training DiscoLM 120b:
134
+
135
+ * [SlimOrca-Dedup](https://huggingface.co/datasets/Open-Orca/SlimOrca-Dedup)
136
+ * [OpenPlatypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
137
+ * [OpenHermes](https://huggingface.co/datasets/teknium/openhermes)
138
+ * [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
139
+ * [UltraChat](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
140
+ * [Synthia v.1.3](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
141
+ * [AgentInstruct](https://huggingface.co/datasets/THUDM/AgentInstruct)
142
+
143
+ Many thanks for all dataset providers/curators!
144
+
145
+ ## Contact
146
+
147
+ Best way to reach us is on our [Discord](https://discord.gg/4pAqJP7W).
148
+
149
+ ## About DiscoResearch
150
+
151
+ DiscoResearch is an aspiring open research community. Disco should be a place where researchers from many communities can come together to combine their expertise and create innovative and groundbreaking LLMs. Come join our Discord, share your opinions and ideas, and advance open LLM research with us!
152
+
153
+ ## Acknowledgements
154
+
155
+ Disco 120b is a [DiscoResearch](https://huggingface.co/DiscoResearch) project and was trained by [Björn Plüster](https://huggingface.co/bjoernp). [Jan Harries](https://huggingface.co/jphme) helped with technical adivce, logistics and the Model Card and [AutoMeta](https://huggingface.co/Alignment-Lab-AI) also provided helpful technical adivce.
156
+ The model was trained with compute provided by [HessianAI](https://hessian.ai/) - many thanks in particular to [Patrick Schramowski](https://huggingface.co/PSaiml) for his support.
157
+
158
+ We are standing on the shoulders of giants; many thanks in no particular order to [alpindale](https://huggingface.co/alpindale) for Goliath 120b (with important contributions by [Charles Goddard](https://huggingface.co/chargoddard) and [Undi95](https://huggingface.co/Undi95)), [TheBloke](https://huggingface.co/TheBloke) for providing quantized versions, [winglian](https://huggingface.co/winglian) for Axolotl which was used to train the model and the SlimOrca dataset, [garage-bAInd](https://huggingface.co/garage-bAInd), [Teknium](https://huggingface.co/teknium), [Migel Tissera](https://huggingface.co/migtissera), [MetaMath](https://huggingface.co/meta-math) for their great datasets (please contact us if we forgot to mention you here!).
159
+
160
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
161
+
162
+ ## Disclaimer
163
+
164
+ The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model.
165
+ This model should only be used for research purposes. The original Llama2 license and all restrictions of datasets used to train this model apply.