bank_statement_extractor-v1

This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0708
  • Precision: 0.9963
  • Recall: 0.9963
  • F1: 0.9963
  • Accuracy: 0.9968

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 5.0 50 1.6411 0.7203 0.6886 0.7041 0.7302
No log 10.0 100 0.7567 0.9599 0.9634 0.9616 0.9619
No log 15.0 150 0.3852 0.9927 0.9927 0.9927 0.9937
No log 20.0 200 0.2156 0.9927 0.9927 0.9927 0.9937
No log 25.0 250 0.1415 0.9963 0.9963 0.9963 0.9968
No log 30.0 300 0.1087 0.9963 0.9963 0.9963 0.9968
No log 35.0 350 0.0896 0.9963 0.9963 0.9963 0.9968
No log 40.0 400 0.0779 0.9963 0.9963 0.9963 0.9968
No log 45.0 450 0.0720 0.9963 0.9963 0.9963 0.9968
0.4783 50.0 500 0.0708 0.9963 0.9963 0.9963 0.9968

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Divyanshu97/bank_statement_extractor-v1

Finetuned
(224)
this model