|
--- |
|
language: |
|
- ru |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model MedRuRobertaLarge |
|
|
|
# Model Description |
|
|
|
This model is fine-tuned version of [ruRoberta-large](https://huggingface.co/sberbank-ai/ruRoberta-large). |
|
The code for the fine-tuned process can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/spellchecker/ml_ranging/models/med_ru_roberta_large/fine_tune_ru_roberta_large.py). |
|
The model is fine-tuned on a specially collected dataset of over 30,000 medical anamneses in Russian. |
|
The collected dataset can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker/blob/main/data/anamnesis/processed/all_anamnesis.csv). |
|
|
|
This model was created as part of a master's project to develop a method for correcting typos |
|
in medical histories using BERT models as a ranking of candidates. |
|
The project is open source and can be found [here](https://github.com/DmitryPogrebnoy/MedSpellChecker). |
|
|
|
# How to Get Started With the Model |
|
|
|
You can use the model directly with a pipeline for masked language modeling: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
>>> pipeline = pipeline('fill-mask', model='DmitryPogrebnoy/MedRuRobertaLarge') |
|
>>> pipeline("У пациента <mask> боль в грудине.") |
|
[{'score': 0.2467374950647354, |
|
'token': 9233, |
|
'token_str': ' сильный', |
|
'sequence': 'У пациента сильный боль в грудине.'}, |
|
{'score': 0.16476310789585114, |
|
'token': 27876, |
|
'token_str': ' постоянный', |
|
'sequence': 'У пациента постоянный боль в грудине.'}, |
|
{'score': 0.07211139053106308, |
|
'token': 19551, |
|
'token_str': ' острый', |
|
'sequence': 'У пациента острый боль в грудине.'}, |
|
{'score': 0.0616639070212841, |
|
'token': 18840, |
|
'token_str': ' сильная', |
|
'sequence': 'У пациента сильная боль в грудине.'}, |
|
{'score': 0.029712719842791557, |
|
'token': 40176, |
|
'token_str': ' острая', |
|
'sequence': 'У пациента острая боль в грудине.'}] |
|
``` |
|
|
|
Or you can load the model and tokenizer and do what you need to do: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, AutoModelForMaskedLM |
|
>>> tokenizer = AutoTokenizer.from_pretrained("DmitryPogrebnoy/MedRuRobertaLarge") |
|
>>> model = AutoModelForMaskedLM.from_pretrained("DmitryPogrebnoy/MedRuRobertaLarge") |
|
``` |