Edit model card

2020-Q1-50p-filtered

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4514

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.1e-07
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2400000

Training results

Training Loss Epoch Step Validation Loss
No log 0.03 8000 2.8937
3.073 0.07 16000 2.7660
3.073 0.1 24000 2.7233
2.8244 0.13 32000 2.6878
2.8244 0.16 40000 2.6520
2.7542 0.2 48000 2.6300
2.7542 0.23 56000 2.6135
2.7083 0.26 64000 2.6068
2.7083 0.3 72000 2.5854
2.6752 0.33 80000 2.5755
2.6752 0.36 88000 2.5721
2.6657 0.39 96000 2.5709
2.6657 0.43 104000 2.5656
2.6534 0.46 112000 2.5558
2.6534 0.49 120000 2.5496
2.646 0.52 128000 2.5471
2.646 0.56 136000 2.5408
2.625 0.59 144000 2.5315
2.625 0.62 152000 2.5365
2.6222 0.66 160000 2.5372
2.6222 0.69 168000 2.5342
2.6256 0.72 176000 2.5308
2.6256 0.75 184000 2.5312
2.6074 0.79 192000 2.5228
2.6074 0.82 200000 2.5292
2.6071 0.85 208000 2.5295
2.6071 0.89 216000 2.5235
2.5955 0.92 224000 2.5219
2.5955 0.95 232000 2.5191
2.6036 0.98 240000 2.5171
2.6036 1.02 248000 2.5102
2.6046 1.05 256000 2.5070
2.6046 1.08 264000 2.5109
2.5892 1.11 272000 2.5105
2.5892 1.15 280000 2.5087
2.5929 1.18 288000 2.5094
2.5929 1.21 296000 2.5086
2.5857 1.25 304000 2.4991
2.5857 1.28 312000 2.5089
2.5828 1.31 320000 2.5017
2.5828 1.34 328000 2.5039
2.5812 1.38 336000 2.5065
2.5812 1.41 344000 2.5083
2.5775 1.44 352000 2.5099
2.5775 1.48 360000 2.5079
2.5711 1.51 368000 2.4922
2.5711 1.54 376000 2.5012
2.5797 1.57 384000 2.4999
2.5797 1.61 392000 2.4881
2.5718 1.64 400000 2.4960
2.5718 1.67 408000 2.4908
2.5627 1.7 416000 2.4971
2.5627 1.74 424000 2.4916
2.5641 1.77 432000 2.4971
2.5641 1.8 440000 2.4954
2.5633 1.84 448000 2.4860
2.5633 1.87 456000 2.4894
2.5676 1.9 464000 2.4893
2.5676 1.93 472000 2.4884
2.5687 1.97 480000 2.4921
2.5687 2.0 488000 2.4873
2.5633 2.03 496000 2.4919
2.5633 2.07 504000 2.4821
2.5547 2.1 512000 2.4909
2.5547 2.13 520000 2.4818
2.5617 2.16 528000 2.4855
2.5617 2.2 536000 2.4850
2.5569 2.23 544000 2.4803
2.5569 2.26 552000 2.4776
2.5535 2.29 560000 2.4824
2.5535 2.33 568000 2.4822
2.5534 2.36 576000 2.4763
2.5534 2.39 584000 2.4797
2.5583 2.43 592000 2.4872
2.5583 2.46 600000 2.4812
2.5545 2.49 608000 2.4748
2.5545 2.52 616000 2.4736
2.5561 2.56 624000 2.4714
2.5561 2.59 632000 2.4858
2.5384 2.62 640000 2.4829
2.5384 2.66 648000 2.4766
2.541 2.69 656000 2.4836
2.541 2.72 664000 2.4651
2.5439 2.75 672000 2.4797
2.5439 2.79 680000 2.4702
2.5597 2.82 688000 2.4751
2.5597 2.85 696000 2.4744
2.5491 2.88 704000 2.4756
2.5491 2.92 712000 2.4731
2.5505 2.95 720000 2.4756
2.5505 2.98 728000 2.4704
2.5432 3.02 736000 2.4763
2.5432 3.05 744000 2.4743
2.5485 3.08 752000 2.4627
2.5485 3.11 760000 2.4714
2.5482 3.15 768000 2.4685
2.5482 3.18 776000 2.4673
2.5411 3.21 784000 2.4726
2.5411 3.25 792000 2.4761
2.5407 3.28 800000 2.4612
2.5407 3.31 808000 2.4743
2.5307 3.34 816000 2.4699
2.5307 3.38 824000 2.4721
2.5391 3.41 832000 2.4614
2.5391 3.44 840000 2.4641
2.5378 3.47 848000 2.4652
2.5378 3.51 856000 2.4641
2.5399 3.54 864000 2.4691
2.5399 3.57 872000 2.4612
2.5412 3.61 880000 2.4696
2.5412 3.64 888000 2.4638
2.5389 3.67 896000 2.4658
2.5389 3.7 904000 2.4725
2.5325 3.74 912000 2.4642
2.5325 3.77 920000 2.4599
2.5351 3.8 928000 2.4617
2.5351 3.84 936000 2.4646
2.522 3.87 944000 2.4665
2.522 3.9 952000 2.4762
2.5331 3.93 960000 2.4669
2.5331 3.97 968000 2.4550
2.5276 4.0 976000 2.4662
2.5276 4.03 984000 2.4645
2.5206 4.06 992000 2.4587
2.5206 4.1 1000000 2.4725
2.5294 4.13 1008000 2.4588
2.5294 4.16 1016000 2.4591
2.5312 4.2 1024000 2.4681
2.5312 4.23 1032000 2.4625
2.525 4.26 1040000 2.4659
2.525 4.29 1048000 2.4609
2.5318 4.33 1056000 2.4571
2.5318 4.36 1064000 2.4582
2.5332 4.39 1072000 2.4566
2.5332 4.43 1080000 2.4588
2.5168 4.46 1088000 2.4606
2.5168 4.49 1096000 2.4598
2.5181 4.52 1104000 2.4543
2.5181 4.56 1112000 2.4620
2.5246 4.59 1120000 2.4639
2.5246 4.62 1128000 2.4556
2.5318 4.65 1136000 2.4571
2.5318 4.69 1144000 2.4636
2.512 4.72 1152000 2.4568
2.512 4.75 1160000 2.4644
2.5174 4.79 1168000 2.4529
2.5174 4.82 1176000 2.4614
2.5196 4.85 1184000 2.4638
2.5196 4.88 1192000 2.4534
2.5248 4.92 1200000 2.4553
2.5248 4.95 1208000 2.4537
2.5201 4.98 1216000 2.4579
2.5201 5.02 1224000 2.4525
2.5164 5.05 1232000 2.4645
2.5164 5.08 1240000 2.4480
2.5186 5.11 1248000 2.4606
2.5186 5.15 1256000 2.4623
2.5123 5.18 1264000 2.4566
2.5123 5.21 1272000 2.4644
2.5233 5.24 1280000 2.4576
2.5233 5.28 1288000 2.4519
2.513 5.31 1296000 2.4570
2.513 5.34 1304000 2.4627
2.5226 5.38 1312000 2.4500
2.5226 5.41 1320000 2.4563
2.5222 5.44 1328000 2.4521
2.5222 5.47 1336000 2.4591
2.5191 5.51 1344000 2.4509
2.5191 5.54 1352000 2.4559
2.5243 5.57 1360000 2.4502
2.5243 5.61 1368000 2.4515
2.5157 5.64 1376000 2.4563
2.5157 5.67 1384000 2.4526
2.5162 5.7 1392000 2.4586
2.5162 5.74 1400000 2.4584
2.5169 5.77 1408000 2.4542
2.5169 5.8 1416000 2.4602
2.5127 5.84 1424000 2.4587
2.5127 5.87 1432000 2.4529
2.5144 5.9 1440000 2.4620
2.5144 5.93 1448000 2.4509
2.5175 5.97 1456000 2.4503
2.5175 6.0 1464000 2.4545
2.5147 6.03 1472000 2.4440
2.5147 6.06 1480000 2.4577
2.5128 6.1 1488000 2.4566
2.5128 6.13 1496000 2.4499
2.5168 6.16 1504000 2.4480
2.5168 6.2 1512000 2.4436
2.5225 6.23 1520000 2.4467
2.5225 6.26 1528000 2.4520
2.5135 6.29 1536000 2.4535
2.5135 6.33 1544000 2.4463
2.5161 6.36 1552000 2.4556
2.5161 6.39 1560000 2.4605
2.5144 6.43 1568000 2.4516
2.5144 6.46 1576000 2.4488
2.5209 6.49 1584000 2.4525
2.5209 6.52 1592000 2.4502
2.5102 6.56 1600000 2.4538
2.5102 6.59 1608000 2.4491
2.5176 6.62 1616000 2.4528
2.5176 6.65 1624000 2.4460
2.5208 6.69 1632000 2.4485
2.5208 6.72 1640000 2.4513
2.5064 6.75 1648000 2.4519
2.5064 6.79 1656000 2.4493
2.5111 6.82 1664000 2.4505
2.5111 6.85 1672000 2.4502
2.5141 6.88 1680000 2.4560
2.5141 6.92 1688000 2.4500
2.5089 6.95 1696000 2.4513
2.5089 6.98 1704000 2.4418
2.5174 7.02 1712000 2.4477
2.5174 7.05 1720000 2.4508
2.5198 7.08 1728000 2.4486
2.5198 7.11 1736000 2.4577
2.4974 7.15 1744000 2.4416
2.4974 7.18 1752000 2.4549
2.5016 7.21 1760000 2.4557
2.5016 7.24 1768000 2.4532
2.5112 7.28 1776000 2.4451
2.5112 7.31 1784000 2.4607
2.5172 7.34 1792000 2.4452
2.5172 7.38 1800000 2.4427
2.5089 7.41 1808000 2.4511
2.5089 7.44 1816000 2.4441
2.5136 7.47 1824000 2.4492
2.5136 7.51 1832000 2.4524
2.509 7.54 1840000 2.4512
2.509 7.57 1848000 2.4528
2.5157 7.61 1856000 2.4440
2.5157 7.64 1864000 2.4402
2.5181 7.67 1872000 2.4538
2.5181 7.7 1880000 2.4481
2.5145 7.74 1888000 2.4417
2.5145 7.77 1896000 2.4512
2.5013 7.8 1904000 2.4560
2.5013 7.83 1912000 2.4509
2.5064 7.87 1920000 2.4473
2.5064 7.9 1928000 2.4576
2.5068 7.93 1936000 2.4461
2.5068 7.97 1944000 2.4451
2.5152 8.0 1952000 2.4421
2.5152 8.03 1960000 2.4458
2.5025 8.06 1968000 2.4532
2.5025 8.1 1976000 2.4541
2.5151 8.13 1984000 2.4499
2.5151 8.16 1992000 2.4501
2.5138 8.2 2000000 2.4448
2.5138 8.23 2008000 2.4562
2.5039 8.26 2016000 2.4613
2.5039 8.29 2024000 2.4471
2.5055 8.33 2032000 2.4450
2.5055 8.36 2040000 2.4493
2.5085 8.39 2048000 2.4482
2.5085 8.42 2056000 2.4572
2.5114 8.46 2064000 2.4443
2.5114 8.49 2072000 2.4456
2.5132 8.52 2080000 2.4528
2.5132 8.56 2088000 2.4497
2.5072 8.59 2096000 2.4548
2.5072 8.62 2104000 2.4548
2.504 8.65 2112000 2.4443
2.504 8.69 2120000 2.4452
2.5128 8.72 2128000 2.4510
2.5128 8.75 2136000 2.4480
2.5133 8.79 2144000 2.4470
2.5133 8.82 2152000 2.4437
2.5067 8.85 2160000 2.4447
2.5067 8.88 2168000 2.4531
2.4996 8.92 2176000 2.4475
2.4996 8.95 2184000 2.4438
2.5123 8.98 2192000 2.4552
2.5123 9.01 2200000 2.4441
2.5044 9.05 2208000 2.4438
2.5044 9.08 2216000 2.4534
2.5068 9.11 2224000 2.4497
2.5068 9.15 2232000 2.4440
2.5165 9.18 2240000 2.4577
2.5165 9.21 2248000 2.4507
2.5087 9.24 2256000 2.4494
2.5087 9.28 2264000 2.4393
2.5036 9.31 2272000 2.4487
2.5036 9.34 2280000 2.4423
2.5086 9.38 2288000 2.4456
2.5086 9.41 2296000 2.4496
2.5034 9.44 2304000 2.4499
2.5034 9.47 2312000 2.4433
2.5099 9.51 2320000 2.4534
2.5099 9.54 2328000 2.4495
2.5065 9.57 2336000 2.4510
2.5065 9.6 2344000 2.4513
2.502 9.64 2352000 2.4512
2.502 9.67 2360000 2.4469
2.5043 9.7 2368000 2.4544
2.5043 9.74 2376000 2.4493
2.5068 9.77 2384000 2.4537
2.5068 9.8 2392000 2.4387
2.5118 9.83 2400000 2.4494

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DouglasPontes/2020-Q1-50p-filtered-random

Finetuned
(34)
this model