Edit model card

2020-Q3-75p-filtered

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1267

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.1e-07
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2400000

Training results

Training Loss Epoch Step Validation Loss
No log 0.07 8000 3.4513
3.6645 0.14 16000 3.3790
3.6645 0.2 24000 3.3226
3.4678 0.27 32000 3.2901
3.4678 0.34 40000 3.2590
3.4118 0.41 48000 3.2534
3.4118 0.47 56000 3.2357
3.3843 0.54 64000 3.2228
3.3843 0.61 72000 3.2331
3.3633 0.68 80000 3.2047
3.3633 0.74 88000 3.2138
3.3474 0.81 96000 3.2050
3.3474 0.88 104000 3.2051
3.3414 0.95 112000 3.1930
3.3414 1.01 120000 3.2002
3.335 1.08 128000 3.1920
3.335 1.15 136000 3.1914
3.3283 1.22 144000 3.1853
3.3283 1.28 152000 3.1825
3.3276 1.35 160000 3.1827
3.3276 1.42 168000 3.1756
3.323 1.49 176000 3.1865
3.323 1.56 184000 3.1749
3.3275 1.62 192000 3.1782
3.3275 1.69 200000 3.1676
3.3309 1.76 208000 3.1832
3.3309 1.83 216000 3.1744
3.3166 1.89 224000 3.1645
3.3166 1.96 232000 3.1770
3.3206 2.03 240000 3.1656
3.3206 2.1 248000 3.1561
3.3228 2.16 256000 3.1665
3.3228 2.23 264000 3.1657
3.3208 2.3 272000 3.1693
3.3208 2.37 280000 3.1778
3.3106 2.43 288000 3.1760
3.3106 2.5 296000 3.1664
3.3189 2.57 304000 3.1677
3.3189 2.64 312000 3.1600
3.319 2.7 320000 3.1570
3.319 2.77 328000 3.1699
3.3236 2.84 336000 3.1578
3.3236 2.91 344000 3.1665
3.3205 2.98 352000 3.1558
3.3205 3.04 360000 3.1678
3.3114 3.11 368000 3.1597
3.3114 3.18 376000 3.1618
3.3067 3.25 384000 3.1584
3.3067 3.31 392000 3.1597
3.314 3.38 400000 3.1565
3.314 3.45 408000 3.1612
3.3183 3.52 416000 3.1637
3.3183 3.58 424000 3.1569
3.318 3.65 432000 3.1576
3.318 3.72 440000 3.1639
3.3114 3.79 448000 3.1460
3.3114 3.85 456000 3.1611
3.3068 3.92 464000 3.1587
3.3068 3.99 472000 3.1542
3.3166 4.06 480000 3.1422
3.3166 4.12 488000 3.1604
3.3057 4.19 496000 3.1587
3.3057 4.26 504000 3.1576
3.3176 4.33 512000 3.1602
3.3176 4.4 520000 3.1544
3.3126 4.46 528000 3.1478
3.3126 4.53 536000 3.1520
3.3044 4.6 544000 3.1581
3.3044 4.67 552000 3.1625
3.3118 4.73 560000 3.1510
3.3118 4.8 568000 3.1548
3.3085 4.87 576000 3.1539
3.3085 4.94 584000 3.1503
3.3014 5.0 592000 3.1504
3.3014 5.07 600000 3.1534
3.3115 5.14 608000 3.1551
3.3115 5.21 616000 3.1493
3.3079 5.27 624000 3.1427
3.3079 5.34 632000 3.1500
3.3138 5.41 640000 3.1546
3.3138 5.48 648000 3.1482
3.3096 5.54 656000 3.1346
3.3096 5.61 664000 3.1328
3.3121 5.68 672000 3.1500
3.3121 5.75 680000 3.1312
3.3195 5.82 688000 3.1440
3.3195 5.88 696000 3.1191
3.3091 5.95 704000 3.1397
3.3091 6.02 712000 3.1485
3.3089 6.09 720000 3.1340
3.3089 6.15 728000 3.1385
3.3062 6.22 736000 3.1358
3.3062 6.29 744000 3.1296
3.3102 6.36 752000 3.1260
3.3102 6.42 760000 3.1428
3.3088 6.49 768000 3.1372
3.3088 6.56 776000 3.1404
3.3096 6.63 784000 3.1362
3.3096 6.69 792000 3.1408
3.3079 6.76 800000 3.1350
3.3079 6.83 808000 3.1461
3.3099 6.9 816000 3.1420
3.3099 6.96 824000 3.1213
3.3015 7.03 832000 3.1366
3.3015 7.1 840000 3.1401
3.3045 7.17 848000 3.1295
3.3045 7.24 856000 3.1323
3.3085 7.3 864000 3.1368
3.3085 7.37 872000 3.1275
3.3061 7.44 880000 3.1326
3.3061 7.51 888000 3.1377
3.309 7.57 896000 3.1407
3.309 7.64 904000 3.1324
3.3024 7.71 912000 3.1187
3.3024 7.78 920000 3.1514
3.2955 7.84 928000 3.1351
3.2955 7.91 936000 3.1308
3.3122 7.98 944000 3.1405
3.3122 8.05 952000 3.1291
3.304 8.11 960000 3.1244
3.304 8.18 968000 3.1409
3.3046 8.25 976000 3.1355
3.3046 8.32 984000 3.1416
3.3022 8.38 992000 3.1258
3.3022 8.45 1000000 3.1332
3.3004 8.52 1008000 3.1430
3.3004 8.59 1016000 3.1282
3.3045 8.66 1024000 3.1287
3.3045 8.72 1032000 3.1368
3.3047 8.79 1040000 3.1362
3.3047 8.86 1048000 3.1268
3.3044 8.93 1056000 3.1329
3.3044 8.99 1064000 3.1245
3.2961 9.06 1072000 3.1271
3.2961 9.13 1080000 3.1300
3.2999 9.2 1088000 3.1369
3.2999 9.26 1096000 3.1425
3.3012 9.33 1104000 3.1213
3.3012 9.4 1112000 3.1285
3.3008 9.47 1120000 3.1353
3.3008 9.53 1128000 3.1367
3.3028 9.6 1136000 3.1294
3.3028 9.67 1144000 3.1340
3.3043 9.74 1152000 3.1330
3.3043 9.8 1160000 3.1380
3.2976 9.87 1168000 3.1198
3.2976 9.94 1176000 3.1290
3.3048 10.01 1184000 3.1458
3.3048 10.08 1192000 3.1274
3.3038 10.14 1200000 3.1181
3.3038 10.21 1208000 3.1279
3.3066 10.28 1216000 3.1230
3.3066 10.35 1224000 3.1320
3.3019 10.41 1232000 3.1203
3.3019 10.48 1240000 3.1349
3.3037 10.55 1248000 3.1323
3.3037 10.62 1256000 3.1343
3.2868 10.68 1264000 3.1262
3.2868 10.75 1272000 3.1266
3.3033 10.82 1280000 3.1283
3.3033 10.89 1288000 3.1290
3.2984 10.95 1296000 3.1177
3.2984 11.02 1304000 3.1234
3.2982 11.09 1312000 3.1310
3.2982 11.16 1320000 3.1409
3.303 11.23 1328000 3.1330
3.303 11.29 1336000 3.1281
3.2976 11.36 1344000 3.1286
3.2976 11.43 1352000 3.1283
3.2923 11.5 1360000 3.1146
3.2923 11.56 1368000 3.1387
3.2988 11.63 1376000 3.1278
3.2988 11.7 1384000 3.1225
3.299 11.77 1392000 3.1341
3.299 11.83 1400000 3.1211
3.2993 11.9 1408000 3.1026
3.2993 11.97 1416000 3.1223
3.2942 12.04 1424000 3.1200
3.2942 12.1 1432000 3.1246
3.3062 12.17 1440000 3.1325
3.3062 12.24 1448000 3.1388
3.297 12.31 1456000 3.1371
3.297 12.37 1464000 3.1272
3.3033 12.44 1472000 3.1231
3.3033 12.51 1480000 3.1316
3.291 12.58 1488000 3.1393
3.291 12.65 1496000 3.1269
3.3054 12.71 1504000 3.1363
3.3054 12.78 1512000 3.1249
3.2908 12.85 1520000 3.1310
3.2908 12.92 1528000 3.1213
3.2987 12.98 1536000 3.1223
3.2987 13.05 1544000 3.1134
3.2965 13.12 1552000 3.1168
3.2965 13.19 1560000 3.1230
3.2931 13.25 1568000 3.1132
3.2931 13.32 1576000 3.1196
3.301 13.39 1584000 3.1287
3.301 13.46 1592000 3.1145
3.3004 13.52 1600000 3.1291
3.3004 13.59 1608000 3.1145
3.2992 13.66 1616000 3.1292
3.2992 13.73 1624000 3.1248
3.2974 13.79 1632000 3.1315
3.2974 13.86 1640000 3.1112
3.2993 13.93 1648000 3.1217
3.2993 14.0 1656000 3.1362
3.2934 14.07 1664000 3.1199
3.2934 14.13 1672000 3.1276
3.2964 14.2 1680000 3.1164
3.2964 14.27 1688000 3.1172
3.305 14.34 1696000 3.1320
3.305 14.4 1704000 3.1269
3.3022 14.47 1712000 3.1107
3.3022 14.54 1720000 3.1097
3.2969 14.61 1728000 3.1176
3.2969 14.67 1736000 3.1282
3.2976 14.74 1744000 3.1195
3.2976 14.81 1752000 3.1154
3.3004 14.88 1760000 3.1147
3.3004 14.94 1768000 3.1094
3.2908 15.01 1776000 3.1313
3.2908 15.08 1784000 3.1280
3.2896 15.15 1792000 3.1304
3.2896 15.21 1800000 3.1329
3.3061 15.28 1808000 3.1198
3.3061 15.35 1816000 3.1258
3.3056 15.42 1824000 3.1253
3.3056 15.49 1832000 3.1200
3.2921 15.55 1840000 3.1384
3.2921 15.62 1848000 3.1225
3.2895 15.69 1856000 3.1284
3.2895 15.76 1864000 3.1201
3.293 15.82 1872000 3.1256
3.293 15.89 1880000 3.1166
3.2963 15.96 1888000 3.1218
3.2963 16.03 1896000 3.1193
3.2908 16.09 1904000 3.1204
3.2908 16.16 1912000 3.1325
3.3039 16.23 1920000 3.1091
3.3039 16.3 1928000 3.1250
3.3011 16.36 1936000 3.1217
3.3011 16.43 1944000 3.1208
3.3003 16.5 1952000 3.1109
3.3003 16.57 1960000 3.1252
3.3012 16.63 1968000 3.1123
3.3012 16.7 1976000 3.1213
3.2885 16.77 1984000 3.1219
3.2885 16.84 1992000 3.1254
3.2982 16.91 2000000 3.1260
3.2982 16.97 2008000 3.1167
3.2962 17.04 2016000 3.1082
3.2962 17.11 2024000 3.1204
3.2889 17.18 2032000 3.1236
3.2889 17.24 2040000 3.1325
3.2892 17.31 2048000 3.1200
3.2892 17.38 2056000 3.1231
3.3028 17.45 2064000 3.1202
3.3028 17.51 2072000 3.1189
3.2889 17.58 2080000 3.1337
3.2889 17.65 2088000 3.1156
3.2985 17.72 2096000 3.1258
3.2985 17.78 2104000 3.1358
3.2949 17.85 2112000 3.1271
3.2949 17.92 2120000 3.1250
3.2987 17.99 2128000 3.1244
3.2987 18.05 2136000 3.1221
3.2884 18.12 2144000 3.1198
3.2884 18.19 2152000 3.1170
3.2918 18.26 2160000 3.1159
3.2918 18.33 2168000 3.1153
3.2995 18.39 2176000 3.1203
3.2995 18.46 2184000 3.1107
3.3003 18.53 2192000 3.1212
3.3003 18.6 2200000 3.1330
3.2921 18.66 2208000 3.1160
3.2921 18.73 2216000 3.1192
3.293 18.8 2224000 3.1164
3.293 18.87 2232000 3.1225
3.2969 18.93 2240000 3.1243
3.2969 19.0 2248000 3.1152
3.2891 19.07 2256000 3.1323
3.2891 19.14 2264000 3.1077
3.2903 19.2 2272000 3.1348
3.2903 19.27 2280000 3.1202
3.2986 19.34 2288000 3.1220
3.2986 19.41 2296000 3.1236
3.293 19.47 2304000 3.1224
3.293 19.54 2312000 3.1247
3.299 19.61 2320000 3.1235
3.299 19.68 2328000 3.1201
3.2898 19.75 2336000 3.1163
3.2898 19.81 2344000 3.1289
3.2956 19.88 2352000 3.1198
3.2956 19.95 2360000 3.1251
3.2926 20.02 2368000 3.1087
3.2926 20.08 2376000 3.1097
3.2958 20.15 2384000 3.1262
3.2958 20.22 2392000 3.1308
3.2862 20.29 2400000 3.1129

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for DouglasPontes/2020-Q3-75p-filtered

Finetuned
(34)
this model