DouglasPontes's picture
End of training
0a0ecee verified
metadata
license: mit
base_model: cardiffnlp/twitter-roberta-base-2019-90m
tags:
  - generated_from_trainer
model-index:
  - name: 2020-Q3-90p-filtered-random
    results: []

2020-Q3-90p-filtered-random

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4.1e-07
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2400000

Training results

Training Loss Epoch Step Validation Loss
No log 0.17 8000 2.5349
2.7955 0.34 16000 2.4448
2.7955 0.51 24000 2.3949
2.5335 0.67 32000 2.3699
2.5335 0.84 40000 2.3544
2.4757 1.01 48000 2.3477
2.4757 1.18 56000 2.3281
2.446 1.35 64000 2.3171
2.446 1.52 72000 2.3082
2.4291 1.68 80000 2.3170
2.4291 1.85 88000 2.2962
2.4275 2.02 96000 2.3044
2.4275 2.19 104000 2.2738
2.4148 2.36 112000 2.2927
2.4148 2.53 120000 2.2684
2.4062 2.69 128000 2.2891
2.4062 2.86 136000 2.2789
2.4022 3.03 144000 2.2659
2.4022 3.2 152000 2.2824
2.3943 3.37 160000 2.2684
2.3943 3.54 168000 2.2683
2.3957 3.71 176000 2.2737
2.3957 3.87 184000 2.2779
2.3976 4.04 192000 2.2710
2.3976 4.21 200000 2.2495
2.3933 4.38 208000 2.2660
2.3933 4.55 216000 2.2687
2.4039 4.72 224000 2.2581
2.4039 4.88 232000 2.2656
2.3966 5.05 240000 2.2543
2.3966 5.22 248000 2.2768
2.3902 5.39 256000 2.2551
2.3902 5.56 264000 2.2782
2.3906 5.73 272000 2.2639
2.3906 5.89 280000 2.2585
2.3849 6.06 288000 2.2540
2.3849 6.23 296000 2.2749
2.3805 6.4 304000 2.2503
2.3805 6.57 312000 2.2739
2.3873 6.74 320000 2.2541
2.3873 6.91 328000 2.2512
2.3942 7.07 336000 2.2595
2.3942 7.24 344000 2.2603
2.386 7.41 352000 2.2575
2.386 7.58 360000 2.2789
2.3806 7.75 368000 2.2650
2.3806 7.92 376000 2.2706
2.3883 8.08 384000 2.2652
2.3883 8.25 392000 2.2540
2.3922 8.42 400000 2.2683
2.3922 8.59 408000 2.2638
2.3887 8.76 416000 2.2535
2.3887 8.93 424000 2.2529
2.3818 9.09 432000 2.2483
2.3818 9.26 440000 2.2574
2.387 9.43 448000 2.2624
2.387 9.6 456000 2.2664
2.3839 9.77 464000 2.2572
2.3839 9.94 472000 2.2524
2.3901 10.11 480000 2.2533
2.3901 10.27 488000 2.2501
2.382 10.44 496000 2.2669
2.382 10.61 504000 2.2596
2.3829 10.78 512000 2.2705
2.3829 10.95 520000 2.2553
2.3963 11.12 528000 2.2741
2.3963 11.28 536000 2.2664
2.3843 11.45 544000 2.2532
2.3843 11.62 552000 2.2720
2.3853 11.79 560000 2.2532
2.3853 11.96 568000 2.2700
2.3907 12.13 576000 2.2571
2.3907 12.29 584000 2.2523
2.3865 12.46 592000 2.2458
2.3865 12.63 600000 2.2647
2.3827 12.8 608000 2.2490
2.3827 12.97 616000 2.2624
2.3869 13.14 624000 2.2538
2.3869 13.3 632000 2.2357
2.3958 13.47 640000 2.2509
2.3958 13.64 648000 2.2690
2.3852 13.81 656000 2.2476
2.3852 13.98 664000 2.2721
2.3889 14.15 672000 2.2537
2.3889 14.32 680000 2.2723
2.3839 14.48 688000 2.2664
2.3839 14.65 696000 2.2726
2.3884 14.82 704000 2.2652
2.3884 14.99 712000 2.2633
2.3827 15.16 720000 2.2681
2.3827 15.33 728000 2.2543
2.3861 15.49 736000 2.2634
2.3861 15.66 744000 2.2707
2.3812 15.83 752000 2.2575
2.3812 16.0 760000 2.2549
2.3862 16.17 768000 2.2446
2.3862 16.34 776000 2.2617
2.3859 16.5 784000 2.2505
2.3859 16.67 792000 2.2720
2.3873 16.84 800000 2.2521
2.3873 17.01 808000 2.2543
2.381 17.18 816000 2.2675
2.381 17.35 824000 2.2545
2.3851 17.52 832000 2.2489
2.3851 17.68 840000 2.2606
2.3878 17.85 848000 2.2580
2.3878 18.02 856000 2.2604
2.3812 18.19 864000 2.2631
2.3812 18.36 872000 2.2505
2.3849 18.53 880000 2.2658
2.3849 18.69 888000 2.2567
2.3833 18.86 896000 2.2533
2.3833 19.03 904000 2.2456
2.3847 19.2 912000 2.2533
2.3847 19.37 920000 2.2575
2.3869 19.54 928000 2.2668
2.3869 19.7 936000 2.2599
2.3867 19.87 944000 2.2680
2.3867 20.04 952000 2.2669
2.3942 20.21 960000 2.2483
2.3942 20.38 968000 2.2734
2.3863 20.55 976000 2.2623
2.3863 20.72 984000 2.2650
2.3924 20.88 992000 2.2603
2.3924 21.05 1000000 2.2708
2.3871 21.22 1008000 2.2512
2.3871 21.39 1016000 2.2568
2.3827 21.56 1024000 2.2676
2.3827 21.73 1032000 2.2710
2.3799 21.89 1040000 2.2804
2.3799 22.06 1048000 2.2499
2.3863 22.23 1056000 2.2557
2.3863 22.4 1064000 2.2604
2.3858 22.57 1072000 2.2832
2.3858 22.74 1080000 2.2443
2.3859 22.9 1088000 2.2604
2.3859 23.07 1096000 2.2631
2.3846 23.24 1104000 2.2690
2.3846 23.41 1112000 2.2595
2.3887 23.58 1120000 2.2501
2.3887 23.75 1128000 2.2533
2.3856 23.92 1136000 2.2529
2.3856 24.08 1144000 2.2456
2.3856 24.25 1152000 2.2544
2.3856 24.42 1160000 2.2554
2.3867 24.59 1168000 2.2596
2.3867 24.76 1176000 2.2522
2.3795 24.93 1184000 2.2493
2.3795 25.09 1192000 2.2609
2.3926 25.26 1200000 2.2658
2.3926 25.43 1208000 2.2593
2.3887 25.6 1216000 2.2704
2.3887 25.77 1224000 2.2632
2.3926 25.94 1232000 2.2628
2.3926 26.1 1240000 2.2657
2.3809 26.27 1248000 2.2546
2.3809 26.44 1256000 2.2596
2.3878 26.61 1264000 2.2545
2.3878 26.78 1272000 2.2668
2.3861 26.95 1280000 2.2534
2.3861 27.12 1288000 2.2612
2.3815 27.28 1296000 2.2441
2.3815 27.45 1304000 2.2714
2.3861 27.62 1312000 2.2604
2.3861 27.79 1320000 2.2535
2.388 27.96 1328000 2.2466
2.388 28.13 1336000 2.2581
2.3864 28.29 1344000 2.2572
2.3864 28.46 1352000 2.2381
2.39 28.63 1360000 2.2398
2.39 28.8 1368000 2.2695
2.39 28.97 1376000 2.2628
2.39 29.14 1384000 2.2599
2.3804 29.3 1392000 2.2628
2.3804 29.47 1400000 2.2722
2.3858 29.64 1408000 2.2490
2.3858 29.81 1416000 2.2627
2.3804 29.98 1424000 2.2623
2.3804 30.15 1432000 2.2522
2.3834 30.32 1440000 2.2633
2.3834 30.48 1448000 2.2553
2.3853 30.65 1456000 2.2391
2.3853 30.82 1464000 2.2616
2.3946 30.99 1472000 2.2631
2.3946 31.16 1480000 2.2639
2.385 31.33 1488000 2.2736
2.385 31.49 1496000 2.2715
2.387 31.66 1504000 2.2557
2.387 31.83 1512000 2.2583
2.3831 32.0 1520000 2.2544
2.3831 32.17 1528000 2.2756
2.3835 32.34 1536000 2.2794
2.3835 32.5 1544000 2.2648
2.3857 32.67 1552000 2.2563
2.3857 32.84 1560000 2.2537
2.3856 33.01 1568000 2.2610
2.3856 33.18 1576000 2.2646
2.3902 33.35 1584000 2.2545
2.3902 33.52 1592000 2.2710
2.3897 33.68 1600000 2.2601
2.3897 33.85 1608000 2.2543
2.3866 34.02 1616000 2.2526
2.3866 34.19 1624000 2.2629
2.3823 34.36 1632000 2.2617
2.3823 34.53 1640000 2.2520
2.3874 34.69 1648000 2.2612
2.3874 34.86 1656000 2.2569
2.3895 35.03 1664000 2.2633
2.3895 35.2 1672000 2.2593
2.3857 35.37 1680000 2.2651
2.3857 35.54 1688000 2.2567
2.3811 35.7 1696000 2.2534
2.3811 35.87 1704000 2.2633
2.3944 36.04 1712000 2.2504
2.3944 36.21 1720000 2.2519
2.3883 36.38 1728000 2.2572
2.3883 36.55 1736000 2.2576
2.3859 36.72 1744000 2.2719
2.3859 36.88 1752000 2.2668
2.3914 37.05 1760000 2.2509
2.3914 37.22 1768000 2.2601
2.3848 37.39 1776000 2.2687
2.3848 37.56 1784000 2.2513
2.3903 37.73 1792000 2.2519
2.3903 37.89 1800000 2.2594
2.3822 38.06 1808000 2.2565
2.3822 38.23 1816000 2.2812
2.383 38.4 1824000 2.2589
2.383 38.57 1832000 2.2560
2.3868 38.74 1840000 2.2648
2.3868 38.9 1848000 2.2507
2.3775 39.07 1856000 2.2570
2.3775 39.24 1864000 2.2549
2.3818 39.41 1872000 2.2583
2.3818 39.58 1880000 2.2610
2.3887 39.75 1888000 2.2629
2.3887 39.91 1896000 2.2739
2.3893 40.08 1904000 2.2657
2.3893 40.25 1912000 2.2507
2.3826 40.42 1920000 2.2506
2.3826 40.59 1928000 2.2630
2.3842 40.76 1936000 2.2716
2.3842 40.93 1944000 2.2642
2.3866 41.09 1952000 2.2451
2.3866 41.26 1960000 2.2521
2.3857 41.43 1968000 2.2457
2.3857 41.6 1976000 2.2575
2.3943 41.77 1984000 2.2659
2.3943 41.94 1992000 2.2608
2.387 42.1 2000000 2.2687
2.387 42.27 2008000 2.2718
2.387 42.44 2016000 2.2629
2.387 42.61 2024000 2.2283
2.3804 42.78 2032000 2.2422
2.3804 42.95 2040000 2.2431
2.3842 43.11 2048000 2.2689
2.3842 43.28 2056000 2.2586
2.3856 43.45 2064000 2.2590
2.3856 43.62 2072000 2.2602
2.3843 43.79 2080000 2.2557
2.3843 43.96 2088000 2.2776
2.3891 44.13 2096000 2.2554
2.3891 44.29 2104000 2.2615
2.3811 44.46 2112000 2.2591
2.3811 44.63 2120000 2.2600
2.3874 44.8 2128000 2.2595
2.3874 44.97 2136000 2.2762
2.3822 45.14 2144000 2.2516
2.3822 45.3 2152000 2.2530
2.3933 45.47 2160000 2.2652
2.3933 45.64 2168000 2.2480
2.3853 45.81 2176000 2.2717
2.3853 45.98 2184000 2.2569
2.3917 46.15 2192000 2.2564
2.3917 46.31 2200000 2.2512
2.3859 46.48 2208000 2.2612
2.3859 46.65 2216000 2.2609
2.3879 46.82 2224000 2.2552
2.3879 46.99 2232000 2.2568
2.3823 47.16 2240000 2.2507
2.3823 47.33 2248000 2.2762
2.388 47.49 2256000 2.2522
2.388 47.66 2264000 2.2532
2.3773 47.83 2272000 2.2490
2.3773 48.0 2280000 2.2648
2.3828 48.17 2288000 2.2500
2.3828 48.34 2296000 2.2534
2.3816 48.5 2304000 2.2515
2.3816 48.67 2312000 2.2702
2.3784 48.84 2320000 2.2584
2.3784 49.01 2328000 2.2382
2.3863 49.18 2336000 2.2604
2.3863 49.35 2344000 2.2607
2.3863 49.51 2352000 2.2646
2.3863 49.68 2360000 2.2534
2.3873 49.85 2368000 2.2742
2.3873 50.02 2376000 2.2687
2.39 50.19 2384000 2.2581
2.39 50.36 2392000 2.2460
2.3937 50.53 2400000 2.2642

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0