emotion_recognition

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5074
  • Accuracy: 0.5125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.3274 0.5687
No log 2.0 80 1.4828 0.5188
No log 3.0 120 1.2860 0.5875
No log 4.0 160 1.3801 0.5375
No log 5.0 200 1.3808 0.55
No log 6.0 240 1.4464 0.525
No log 7.0 280 1.5266 0.5188
No log 8.0 320 1.4280 0.5188
No log 9.0 360 1.3953 0.5687
No log 10.0 400 1.4902 0.5312
No log 11.0 440 1.3965 0.5625
No log 12.0 480 1.4328 0.55
0.1776 13.0 520 1.5172 0.5188
0.1776 14.0 560 1.6457 0.5062
0.1776 15.0 600 1.4402 0.5375

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
35
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for Dricz/emotion_recognition

Finetuned
(1884)
this model

Evaluation results