|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-gtzan-bs-16-fp16-false |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.84 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-gtzan-bs-16-fp16-false |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5225 |
|
- Accuracy: 0.84 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.1955 | 1.0 | 57 | 2.1121 | 0.44 | |
|
| 1.6787 | 2.0 | 114 | 1.5681 | 0.62 | |
|
| 1.1812 | 3.0 | 171 | 1.1904 | 0.74 | |
|
| 1.0922 | 4.0 | 228 | 0.9769 | 0.7 | |
|
| 0.7733 | 5.0 | 285 | 0.8104 | 0.78 | |
|
| 0.6225 | 6.0 | 342 | 0.6892 | 0.83 | |
|
| 0.609 | 7.0 | 399 | 0.6572 | 0.85 | |
|
| 0.4223 | 8.0 | 456 | 0.5775 | 0.83 | |
|
| 0.3115 | 9.0 | 513 | 0.5956 | 0.81 | |
|
| 0.1942 | 10.0 | 570 | 0.5556 | 0.82 | |
|
| 0.1602 | 11.0 | 627 | 0.6075 | 0.83 | |
|
| 0.1206 | 12.0 | 684 | 0.5676 | 0.85 | |
|
| 0.1265 | 13.0 | 741 | 0.5585 | 0.85 | |
|
| 0.0776 | 14.0 | 798 | 0.5220 | 0.84 | |
|
| 0.1085 | 15.0 | 855 | 0.5225 | 0.84 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|