Edit model card

wav2vec2-base-finetuned-sentiment-mesd-v9

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3500
  • Accuracy: 0.9154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 40
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.86 3 1.7825 0.1846
1.9553 1.86 6 1.7212 0.4308
1.9553 2.86 9 1.6164 0.3769
2.002 3.86 12 1.4904 0.3769
1.6191 4.86 15 1.4426 0.4385
1.6191 5.86 18 1.3516 0.5231
1.6209 6.86 21 1.2176 0.5538
1.6209 7.86 24 1.1683 0.5692
1.371 8.86 27 1.0885 0.5923
1.1568 9.86 30 1.0152 0.6385
1.1568 10.86 33 0.9289 0.6385
1.1023 11.86 36 0.9141 0.6308
1.1023 12.86 39 0.8526 0.6462
0.9448 13.86 42 0.8420 0.6769
0.7972 14.86 45 0.7976 0.6692
0.7972 15.86 48 0.8192 0.7308
0.7793 16.86 51 0.7108 0.7615
0.7793 17.86 54 0.6712 0.7769
0.6468 18.86 57 0.6684 0.7923
0.5083 19.86 60 0.6922 0.7385
0.5083 20.86 63 0.6148 0.7923
0.4988 21.86 66 0.5846 0.7923
0.4988 22.86 69 0.6050 0.8154
0.4123 23.86 72 0.5506 0.7846
0.3511 24.86 75 0.6095 0.7846
0.3511 25.86 78 0.5916 0.8154
0.3268 26.86 81 0.5912 0.8077
0.3268 27.86 84 0.5142 0.8538
0.3036 28.86 87 0.5492 0.8077
0.3066 29.86 90 0.6007 0.8231
0.3066 30.86 93 0.5748 0.8231
0.2538 31.86 96 0.6027 0.7692
0.2538 32.86 99 0.6979 0.7462
0.2281 33.86 102 0.7002 0.7615
0.2183 34.86 105 0.6650 0.7769
0.2183 35.86 108 0.5192 0.8462
0.2202 36.86 111 0.5389 0.8308
0.2202 37.86 114 0.5050 0.8385
0.1906 38.86 117 0.5722 0.7769
0.154 39.86 120 0.5239 0.8308
0.154 40.86 123 0.4448 0.8615
0.1474 41.86 126 0.4623 0.8615
0.1474 42.86 129 0.4282 0.8615
0.1345 43.86 132 0.5087 0.8615
0.1567 44.86 135 0.4859 0.8385
0.1567 45.86 138 0.6603 0.8077
0.1731 46.86 141 0.5379 0.8385
0.1731 47.86 144 0.8666 0.7538
0.1606 48.86 147 0.7518 0.8
0.1484 49.86 150 0.5986 0.8385
0.1484 50.86 153 0.6368 0.8231
0.2256 51.86 156 0.4639 0.8692
0.2256 52.86 159 0.5533 0.8462
0.1178 53.86 162 0.5038 0.8615
0.0815 54.86 165 0.5052 0.8692
0.0815 55.86 168 0.4337 0.8846
0.0998 56.86 171 0.4422 0.8769
0.0998 57.86 174 0.4317 0.8692
0.0855 58.86 177 0.4025 0.8923
0.0962 59.86 180 0.4605 0.8769
0.0962 60.86 183 0.4356 0.8769
0.0763 61.86 186 0.4614 0.8769
0.0763 62.86 189 0.4382 0.8846
0.0902 63.86 192 0.4701 0.8692
0.0654 64.86 195 0.4922 0.8692
0.0654 65.86 198 0.5413 0.8538
0.0651 66.86 201 0.5759 0.8615
0.0651 67.86 204 0.4238 0.9
0.0822 68.86 207 0.3500 0.9154
0.0625 69.86 210 0.3878 0.8923
0.0625 70.86 213 0.4952 0.8615
0.0548 71.86 216 0.4544 0.8615
0.0548 72.86 219 0.5497 0.8769
0.054 73.86 222 0.4434 0.8846
0.0543 74.86 225 0.4732 0.8769
0.0543 75.86 228 0.4425 0.8923
0.0881 76.86 231 0.4788 0.8769
0.0881 77.86 234 0.5448 0.8769
0.061 78.86 237 0.4221 0.9077
0.0567 79.86 240 0.4404 0.8769
0.0567 80.86 243 0.4099 0.9
0.052 81.86 246 0.5259 0.8769
0.052 82.86 249 0.5874 0.8692
0.0444 83.86 252 0.5555 0.8846
0.0332 84.86 255 0.5156 0.8615
0.0332 85.86 258 0.4564 0.8615
0.0449 86.86 261 0.4826 0.8692
0.0449 87.86 264 0.4726 0.8615
0.0385 88.86 267 0.4206 0.8846
0.0356 89.86 270 0.4050 0.8769
0.0356 90.86 273 0.4161 0.8923
0.0391 91.86 276 0.4100 0.9077
0.0391 92.86 279 0.4047 0.9
0.0249 93.86 282 0.4044 0.9
0.0399 94.86 285 0.3968 0.8846
0.0399 95.86 288 0.3802 0.9
0.031 96.86 291 0.3689 0.9
0.031 97.86 294 0.3616 0.9077
0.036 98.86 297 0.3584 0.9077
0.0386 99.86 300 0.3574 0.9077

Framework versions

  • Transformers 4.17.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.