metadata
language:
- hi
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_7_0
- generated_from_trainer
- hi
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_7_0
model-index:
- name: wav2vec2-large-xls-r-300m-hi-CV7
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 7
type: mozilla-foundation/common_voice_7_0
args: hi
metrics:
- name: Test WER
type: wer
value: 35.31946325249292
- name: Test CER
type: cer
value: 11.310803379493075
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: vot
metrics:
- name: Test WER
type: wer
value: NA
- name: Test CER
type: cer
value: NA
wav2vec2-large-xls-r-300m-hi-CV7
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HI dataset. It achieves the following results on the evaluation set:
- Loss: 0.6588
- Wer: 0.2987
Evaluation Commands
- To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-hi-CV7 --dataset mozilla-foundation/common_voice_7_0 --config hi --split test --log_outputs
- To evaluate on speech-recognition-community-v2/dev_data
NA
Training hyperparameters
The following hyperparameters were used during training: #
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 60
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
12.809 | 1.36 | 200 | 6.2066 | 1.0 |
4.3402 | 2.72 | 400 | 3.5184 | 1.0 |
3.4365 | 4.08 | 600 | 3.2779 | 1.0 |
1.8643 | 5.44 | 800 | 0.9875 | 0.6270 |
0.7504 | 6.8 | 1000 | 0.6382 | 0.4666 |
0.5328 | 8.16 | 1200 | 0.6075 | 0.4505 |
0.4364 | 9.52 | 1400 | 0.5785 | 0.4215 |
0.3777 | 10.88 | 1600 | 0.6279 | 0.4227 |
0.3374 | 12.24 | 1800 | 0.6536 | 0.4192 |
0.3236 | 13.6 | 2000 | 0.5911 | 0.4047 |
0.2877 | 14.96 | 2200 | 0.5955 | 0.4097 |
0.2643 | 16.33 | 2400 | 0.5923 | 0.3744 |
0.2421 | 17.68 | 2600 | 0.6307 | 0.3814 |
0.2218 | 19.05 | 2800 | 0.6036 | 0.3764 |
0.2046 | 20.41 | 3000 | 0.6286 | 0.3797 |
0.191 | 21.77 | 3200 | 0.6517 | 0.3889 |
0.1856 | 23.13 | 3400 | 0.6193 | 0.3661 |
0.1721 | 24.49 | 3600 | 0.7034 | 0.3727 |
0.1656 | 25.85 | 3800 | 0.6293 | 0.3591 |
0.1532 | 27.21 | 4000 | 0.6075 | 0.3611 |
0.1507 | 28.57 | 4200 | 0.6313 | 0.3565 |
0.1381 | 29.93 | 4400 | 0.6564 | 0.3578 |
0.1359 | 31.29 | 4600 | 0.6724 | 0.3543 |
0.1248 | 32.65 | 4800 | 0.6789 | 0.3512 |
0.1198 | 34.01 | 5000 | 0.6442 | 0.3539 |
0.1125 | 35.37 | 5200 | 0.6676 | 0.3419 |
0.1036 | 36.73 | 5400 | 0.7017 | 0.3435 |
0.0982 | 38.09 | 5600 | 0.6828 | 0.3319 |
0.0971 | 39.45 | 5800 | 0.6112 | 0.3351 |
0.0968 | 40.81 | 6000 | 0.6424 | 0.3252 |
0.0893 | 42.18 | 6200 | 0.6707 | 0.3304 |
0.0878 | 43.54 | 6400 | 0.6432 | 0.3236 |
0.0827 | 44.89 | 6600 | 0.6696 | 0.3240 |
0.0788 | 46.26 | 6800 | 0.6564 | 0.3180 |
0.0753 | 47.62 | 7000 | 0.6574 | 0.3130 |
0.0674 | 48.98 | 7200 | 0.6698 | 0.3175 |
0.0676 | 50.34 | 7400 | 0.6441 | 0.3142 |
0.0626 | 51.7 | 7600 | 0.6642 | 0.3121 |
0.0617 | 53.06 | 7800 | 0.6615 | 0.3117 |
0.0599 | 54.42 | 8000 | 0.6634 | 0.3059 |
0.0538 | 55.78 | 8200 | 0.6464 | 0.3033 |
0.0571 | 57.14 | 8400 | 0.6503 | 0.3018 |
0.0491 | 58.5 | 8600 | 0.6625 | 0.3025 |
0.0511 | 59.86 | 8800 | 0.6588 | 0.2987 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0