YAML Metadata
Error:
"model-index" must be an array
This model achieves WER on common-voice ro test split of WER: 12.457178%
wav2vec2-xls-r-300m-romanian
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on an common voice ro and RSS dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.0836
- eval_wer: 0.0705
- eval_runtime: 160.4549
- eval_samples_per_second: 11.081
- eval_steps_per_second: 1.39
- epoch: 14.38
- step: 2703
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 15
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
Used the following code for evaluation:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ro", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("Dumiiii/wav2vec2-xls-r-300m-romanian")
model = Wav2Vec2ForCTC.from_pretrained("Dumiiii/wav2vec2-xls-r-300m-romanian")
model.to("cuda")
chars_to_ignore_regex = '['+string.punctuation+']'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Credits for evaluation: https://huggingface.co/anton-l
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.