metadata
license: openrail++
language:
- en
library_name: diffusers
tags:
- text-to-image
- prior
- unclip
- kandinskyv2.2
Introduction
This ECLIPSE model weight is a tiny (33M parameter) non-diffusion text-to-image prior model trained on CC12M data.
Despite being so small and trained on a limited amount of data, ECLIPSE priors achieve results that of 1 Billion parameter T2I prior models trained on millions of image-text pairs.
- Project Page: https://eclipse-t2i.vercel.app
- GitHub: https://github.com/eclipse-t2i/eclipse-inference
Evaluations
Installation
git clone git@github.com:eclipse-t2i/eclipse-inference.git
conda create -p ./venv python=3.9
pip install -r requirements.txt
Run Inference
This repository supports two pre-trained image decoders: Karlo-v1-alpha and Kandinsky-v2.2. Note: ECLIPSE prior is not a diffusion model -- while image decoders are.
Karlo Inference
from src.pipelines.pipeline_unclip import UnCLIPPipeline
from src.priors.prior_transformer import PriorTransformer
prior = PriorTransformer.from_pretrained("ECLIPSE-Community/ECLIPSE_Karlo_Prior")
pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", prior=prior).to("cuda")
prompt="black apples in the basket"
images = pipe(prompt, decoder_guidance_scale=7.5).images
images[0]
Kandinsky Inference
from src.pipelines.pipeline_kandinsky_prior import KandinskyPriorPipeline
from src.priors.prior_transformer import PriorTransformer
from diffusers import DiffusionPipeline
prior = PriorTransformer.from_pretrained("ECLIPSE-Community/ECLIPSE_KandinskyV22_Prior")
pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", prior=prior).to("cuda")
pipe = DiffusionPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder").to("cuda")
prompt = "black apples in the basket"
image_embeds, negative_image_embeds = pipe_prior(prompt).to_tuple()
images = pipe(
num_inference_steps=50,
image_embeds=image_embeds,
negative_image_embeds=negative_image_embeds,
).images
images[0]
Limitations
The model is intended for research purposes only to show a way to reduce the unnecessary resource usage in existing T2I research.
As this prior model is trained using very small LAION subset and CLIP supervision, it will observe the limitations from the CLIP model such as:
- Lack of spatial understanding.
- Cannot render legible text
- Complex compositionality is still a big challenge that can be improved if CLIP is improved.
- While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.