|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- lambada |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- text-generation-inference |
|
- causal-lm |
|
- int8 |
|
- tensorrt |
|
- ENOT-AutoDL |
|
--- |
|
|
|
# INT8 GPT-J 6B |
|
|
|
GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. |
|
|
|
This repository contains GPT-J 6B onnx model suitable for building TensorRT int8+fp32 engines. Quantization of model was performed by the [ENOT-AutoDL](https://pypi.org/project/enot-autodl/) framework. Code for building of TensorRT engines and examples published on [github](https://github.com/ENOT-AutoDL/ENOT-transformers). |
|
|
|
## Metrics: |
|
|
|
| |TensorRT INT8+FP32|torch FP16|torch FP32| |
|
|---|:---:|:---:|:---:| |
|
| **Lambada Acc** |78.46%|79.53%|-| |
|
| **Model size (GB)** |8.5|12.1|24.2| |
|
|
|
### Test environment |
|
|
|
* GPU RTX 4090 |
|
* CPU 11th Gen Intel(R) Core(TM) i7-11700K |
|
* TensorRT 8.5.3.1 |
|
* pytorch 1.13.1+cu116 |
|
|
|
## Latency: |
|
|
|
|Input sequance length|Number of generated tokens|TensorRT INT8+FP32 ms|torch FP16 ms|Acceleration| |
|
|:---:|:---:|:---:|:---:|:---:| |
|
|64|64|1040|1610|1.55| |
|
|64|128|2089|3224|1.54| |
|
|64|256|4236|6479|1.53| |
|
|128|64|1060|1619|1.53| |
|
|128|128|2120|3241|1.53| |
|
|128|256|4296|6510|1.52| |
|
|256|64|1109|1640|1.49| |
|
|256|128|2204|3276|1.49| |
|
|256|256|4443|6571|1.49| |
|
|
|
### Test environment |
|
|
|
* GPU RTX 4090 |
|
* CPU 11th Gen Intel(R) Core(TM) i7-11700K |
|
* TensorRT 8.5.3.1 |
|
* pytorch 1.13.1+cu116 |
|
|
|
## How to use |
|
|
|
Example of inference and accuracy test [published on github](https://github.com/ENOT-AutoDL/ENOT-transformers): |
|
```shell |
|
git clone https://github.com/ENOT-AutoDL/ENOT-transformers |
|
``` |
|
|