datasets:
- gguichard/coref_dataset
language:
- fr
library_name: transformers
CamemBERT: a Tasty French Language Model
Table of Contents
Model Details
Model Description: This model is a state-of-the-art language model for French coreference resolution.
Developed by: Grégory Guichard
Model Type: Token Classification
Language(s): French
License: MIT
Parent Model: See the Camembert-large model for more information about the RoBERTa base model.
Resources for more information:
Uses
Direct Use
This model can be used for Token Classification tasks.
Risks, Limitations and Biases
CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.
Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)).
This model was pretrained on a subcorpus of OSCAR multilingual corpus. Some of the limitations and risks associated with the OSCAR dataset, which are further detailed in the OSCAR dataset card, include the following:
The quality of some OSCAR sub-corpora might be lower than expected, specifically for the lowest-resource languages.
Constructed from Common Crawl, Personal and sensitive information might be present.
Training
Training Data
OSCAR or Open Super-large Crawled Aggregated coRpus is a multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the Ungoliant architecture.
Training Procedure
Model | #params | Arch. | Training data |
---|---|---|---|
camembert-base |
110M | Base | OSCAR (138 GB of text) |
camembert/camembert-large |
335M | Large | CCNet (135 GB of text) |
camembert/camembert-base-ccnet |
110M | Base | CCNet (135 GB of text) |
camembert/camembert-base-wikipedia-4gb |
110M | Base | Wikipedia (4 GB of text) |
camembert/camembert-base-oscar-4gb |
110M | Base | Subsample of OSCAR (4 GB of text) |
camembert/camembert-base-ccnet-4gb |
110M | Base | Subsample of CCNet (4 GB of text) |
Evaluation
The model developers evaluated CamemBERT using four different downstream tasks for French: part-of-speech (POS) tagging, dependency parsing, named entity recognition (NER) and natural language inference (NLI).
Citation Information
@inproceedings{martin2020camembert,
title={CamemBERT: a Tasty French Language Model},
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
year={2020}
}
How to Get Started With the Model
Load CamemBERT and its sub-word tokenizer :
from transformers import CamembertModel, CamembertTokenizer
# You can replace "camembert-base" with any other model from the table, e.g. "camembert/camembert-large".
tokenizer = CamembertTokenizer.from_pretrained("camembert-base")
camembert = CamembertModel.from_pretrained("camembert-base")
camembert.eval() # disable dropout (or leave in train mode to finetune)
Filling masks using pipeline
from transformers import pipeline
camembert_fill_mask = pipeline("fill-mask", model="camembert-base", tokenizer="camembert-base")
results = camembert_fill_mask("Le camembert est <mask> :)")
# results
#[{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.4909103214740753, 'token': 7200},
# {'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.10556930303573608, 'token': 2183},
# {'sequence': '<s> Le camembert est succulent :)</s>', 'score': 0.03453315049409866, 'token': 26202},
# {'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.03303130343556404, 'token': 528},
# {'sequence': '<s> Le camembert est parfait :)</s>', 'score': 0.030076518654823303, 'token': 1654}]
Extract contextual embedding features from Camembert output
import torch
# Tokenize in sub-words with SentencePiece
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!']
# 1-hot encode and add special starting and end tokens
encoded_sentence = tokenizer.encode(tokenized_sentence)
# [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]
# NB: Can be done in one step : tokenize.encode("J'aime le camembert !")
# Feed tokens to Camembert as a torch tensor (batch dim 1)
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
embeddings, _ = camembert(encoded_sentence)
# embeddings.detach()
# embeddings.size torch.Size([1, 10, 768])
# tensor([[[-0.0254, 0.0235, 0.1027, ..., -0.1459, -0.0205, -0.0116],
# [ 0.0606, -0.1811, -0.0418, ..., -0.1815, 0.0880, -0.0766],
# [-0.1561, -0.1127, 0.2687, ..., -0.0648, 0.0249, 0.0446],
# ...,
Extract contextual embedding features from all Camembert layers
from transformers import CamembertConfig
# (Need to reload the model with new config)
config = CamembertConfig.from_pretrained("camembert-base", output_hidden_states=True)
camembert = CamembertModel.from_pretrained("camembert-base", config=config)
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
all_layer_embeddings[5]
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
#tensor([[[-0.0032, 0.0075, 0.0040, ..., -0.0025, -0.0178, -0.0210],
# [-0.0996, -0.1474, 0.1057, ..., -0.0278, 0.1690, -0.2982],
# [ 0.0557, -0.0588, 0.0547, ..., -0.0726, -0.0867, 0.0699],
# ...,