kobart-summary

How to use

from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration

# Load Model and Tokenizer
tokenizer = PreTrainedTokenizerFast.from_pretrained("EbanLee/kobart-summary-v2")
model = BartForConditionalGeneration.from_pretrained("EbanLee/kobart-summary-v2")

# Encoding
input_text = "์ผ๋ฐ˜์ ์œผ๋กœ ๋กœ์ปฌํ‘ธ๋“œ ๋†์‚ฐ๋ฌผ์€ ๋„๋งค์‹œ์žฅ ๊ฒฝ๋งค๊ฐ€๋ณด๋‹ค ๋†’๊ณ  ์†Œ๋งค๊ฐ€๋ณด๋‹ค ๋‚ฎ์€ ์ˆ˜์ค€์—์„œ ๊ฐ€๊ฒฉ์ด ๊ฒฐ์ •๋œ๋‹ค. ๋†๊ฐ€๋“ค์ด ์ž์œจ์ ์œผ๋กœ ๊ฐ€๊ฒฉ์„ ๊ฒฐ์ •ํ•˜๊ณ  ์žˆ์ง€๋งŒ, ์‹œ์žฅ๊ฐ€๊ฒฉ์„ ์ฐธ๊ณ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€์ฒด๋กœ ์ ์ •ํ•œ ๊ฐ€๊ฒฉ์ด ์„ค์ •๋œ๋‹ค. ๋ฌธ์ œ๋Š” ํƒœํ’, ํญ์šฐ, ํญ์—ผ ๋˜๋Š” ๊ณต๊ธ‰๊ณผ์ž‰์— ๋”ฐ๋ฅธ ์‹œ์žฅ๊ฐ€๊ฒฉ ๋“ฑ๋ฝ์ด ์‹ฌํ•ด์งˆ ๋•Œ์ด๋‹ค. ์™„์ฃผ๊ตฐ ๋กœ์ปฌํ‘ธ๋“œ ํ˜‘๋™์กฐํ•ฉ์€ ์œ„์™€ ๊ฐ™์ด ์™ธ๋ถ€์š”์ธ์— ์˜ํ•ด ๋†์‚ฐ๋ฌผ ๊ฐ€๊ฒฉ์— ๊ธ‰๋“ฑ๋ฝ์ด ๋ฐœ์ƒํ–ˆ์„ ๋•Œ์—๋„ ์—ฐ์ค‘ ์ผ์ • ์ˆ˜์ค€์˜ ๊ฐ€๊ฒฉ์œผ๋กœ ํŒ๋งค๋˜๋„๋ก ์œ ํ†ต ์•ˆ์ • ๊ธฐ๊ธˆ์„ ์šด์šฉํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๋†์‚ฐ๋ฌผ ์ถœํ•˜์ž์—๊ฒŒ ์‚ฌ์ „์— ๋™์˜๋ฅผ ๊ตฌํ•ด ์ผ๋ถ€ ๊ด€๋ฆฌ ํ’ˆ๋ชฉ์€ ๊ฐ€๊ฒฉ ์ƒํ•˜ํ•œ ๋ฐ ํŒ๋งค๋Ÿ‰์„ ์กฐ์ ˆํ•ด ๋‚ฉํ’ˆํ•˜๋„๋ก ๊ต์œกํ•˜๊ณ  ์žˆ๋‹ค."
input_ids = tokenizer.encode(input_text, return_tensors="pt", padding="max_length", truncation=True, max_length=1026)

# Generate Summary Text Ids
summary_text_ids = model.generate(
input_ids=input_ids,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
length_penalty=1.5,
max_length=256,
min_length=12,
num_beams=6,
repetition_penalty=1.5,
)

# Decoding Text Ids
print(tokenizer.decode(summary_text_ids[0], skip_special_tokens=True))
Downloads last month
24
Safetensors
Model size
124M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.