metadata
tags:
- generated_from_trainer
datasets:
- wmt16
metrics:
- bleu
model_index:
- name: opus-mt-en-ro-finetuned-en-to-ro
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wmt16
type: wmt16
args: ro-en
metric:
name: Bleu
type: bleu
value: 28.1641
opus-mt-en-ro-finetuned-en-to-ro
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-ro on the wmt16 dataset. It achieves the following results on the evaluation set:
- Loss: 1.2886
- Bleu: 28.1641
- Gen Len: 34.1071
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
0.7436 | 1.0 | 38145 | 1.2886 | 28.1641 | 34.1071 |
Framework versions
- Transformers 4.9.1
- Pytorch 1.9.0+cu102
- Datasets 1.10.2
- Tokenizers 0.10.3