Edit model card
YAML Metadata Error: "datasets[0]" with value "Common Voice" is not valid. If possible, use a dataset id from https://hf.co/datasets.

Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, MAILABS plus data augmentation

Wav2vec2 Large 100k Voxpopuli Wav2vec2 Large 100k Voxpopuli fine-tuned in Russian using the Common Voice 7.0, M-AILABS plus data augmentation method based on TTS and voice conversion.

Use this model


from transformers import AutoTokenizer, Wav2Vec2ForCTC
  
tokenizer = AutoTokenizer.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian")

model = Wav2Vec2ForCTC.from_pretrained("Edresson/wav2vec2-large-100k-voxpopuli-ft-Common_Voice_plus_TTS-Dataset_plus_Data_Augmentation-russian")

Results

For the results check the paper

Example test with Common Voice Dataset

dataset = load_dataset("common_voice", "ru", split="test", data_dir="./cv-corpus-7.0-2021-07-21")

resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)

def map_to_array(batch):
    speech, _ = torchaudio.load(batch["path"])
    batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
    batch["sampling_rate"] = resampler.new_freq
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
    return batch
ds = dataset.map(map_to_array)
result = ds.map(map_to_pred, batched=True, batch_size=1, remove_columns=list(ds.features.keys()))
print(wer.compute(predictions=result["predicted"], references=result["target"]))
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results