dashing-ram-619
This model is a fine-tuned version of microsoft/deberta-v3-xsmall on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1823
- Hamming Loss: 0.0494
- Zero One Loss: 1.0
- Jaccard Score: 1.0
- Hamming Loss Optimised: 0.0494
- Hamming Loss Threshold: 0.9000
- Zero One Loss Optimised: 1.0
- Zero One Loss Threshold: 0.9000
- Jaccard Score Optimised: 1.0
- Jaccard Score Threshold: 0.9000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.0943791435964314e-05
- train_batch_size: 20
- eval_batch_size: 20
- seed: 2024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Hamming Loss | Zero One Loss | Jaccard Score | Hamming Loss Optimised | Hamming Loss Threshold | Zero One Loss Optimised | Zero One Loss Threshold | Jaccard Score Optimised | Jaccard Score Threshold |
---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 160 | 0.1867 | 0.0497 | 1.0 | 1.0 | 0.0497 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 |
No log | 2.0 | 320 | 0.1837 | 0.0497 | 1.0 | 1.0 | 0.0497 | 0.9000 | 1.0 | 0.9000 | 1.0 | 0.9000 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ElMad/dashing-ram-619
Base model
microsoft/deberta-v3-xsmall