metadata
language:
- hi
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: openai/whisper-tiny
datasets:
- mozilla-foundation/common_voice_17_0
model-index:
- name: Whisper tiny Hindi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: hi
split: None
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 44.76572739187418
Whisper tiny Hindi
This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7189
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.575 | 0.4484 | 100 | 0.8603 |
0.6631 | 0.8969 | 200 | 0.7189 |
Framework versions
- PEFT 0.11.2.dev0
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.3.dev0
- Tokenizers 0.19.1