|
--- |
|
tags: autonlp |
|
language: pt |
|
widget: |
|
- text: "I love AutoNLP 🤗" |
|
datasets: |
|
- Emanuel/autonlp-data-pos-tag-bosque |
|
co2_eq_emissions: 6.2107269129101805 |
|
--- |
|
|
|
# Model Trained Using AutoNLP |
|
|
|
- Problem type: Entity Extraction |
|
- Model ID: 21124427 |
|
- CO2 Emissions (in grams): 6.2107269129101805 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.09813392907381058 |
|
- Accuracy: 0.9714309035997062 |
|
- Precision: 0.9721275936822545 |
|
- Recall: 0.9735345807918949 |
|
- F1: 0.9728305785123967 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Emanuel/autonlp-pos-tag-bosque-21124427 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForTokenClassification, AutoTokenizer |
|
|
|
model = AutoModelForTokenClassification.from_pretrained("Emanuel/autonlp-pos-tag-bosque") |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Emanuel/autonlp-pos-tag-bosque") |
|
|
|
inputs = tokenizer("A noiva casa de branco", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
|
|
labelids = outputs.logits.squeeze().argmax(axis=-1) |
|
labels = [model.config.id2label[int(x)] for x in labelids] |
|
labels = labels[1:-1]# Filter start and end of sentence symbols |
|
|
|
``` |