SetFit
This is a SetFit model that can be used for Text Classification. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
Evento |
|
Perspectiva |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("EmanuelOrler/setfit-spanish-event-perspective")
# Run inference
preds = model("Hallaron una inmensa `huella digital` en el espacio")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 5 | 12.9231 | 24 |
Label | Training Sample Count |
---|---|
Evento | 22 |
Perspectiva | 17 |
Training Hyperparameters
- batch_size: (12, 12)
- num_epochs: (4, 16)
- max_steps: -1
- sampling_strategy: undersampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- evaluation_strategy: steps
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0159 | 1 | 0.0885 | - |
0.1587 | 10 | 0.3927 | 0.2944 |
0.3175 | 20 | 0.3039 | 0.2387 |
0.4762 | 30 | 0.2466 | 0.1807 |
0.6349 | 40 | 0.2049 | 0.1686 |
0.7937 | 50 | 0.1803 | 0.1786 |
0.9524 | 60 | 0.1319 | 0.2002 |
1.1111 | 70 | 0.045 | 0.3103 |
1.2698 | 80 | 0.0099 | 0.3200 |
1.4286 | 90 | 0.0036 | 0.3845 |
1.5873 | 100 | 0.0021 | 0.4078 |
1.7460 | 110 | 0.0011 | 0.4184 |
1.9048 | 120 | 0.0011 | 0.4186 |
2.0635 | 130 | 0.0009 | 0.4282 |
2.2222 | 140 | 0.0008 | 0.4242 |
2.3810 | 150 | 0.0008 | 0.4269 |
2.5397 | 160 | 0.0007 | 0.4303 |
2.6984 | 170 | 0.0006 | 0.4301 |
2.8571 | 180 | 0.0006 | 0.4321 |
3.0159 | 190 | 0.0006 | 0.4311 |
3.1746 | 200 | 0.0005 | 0.4291 |
3.3333 | 210 | 0.0006 | 0.4322 |
3.4921 | 220 | 0.0005 | 0.4315 |
3.6508 | 230 | 0.0005 | 0.4308 |
3.8095 | 240 | 0.0005 | 0.4307 |
3.9683 | 250 | 0.0004 | 0.4312 |
Framework Versions
- Python: 3.10.14
- SetFit: 1.1.0
- Sentence Transformers: 3.2.1
- Transformers: 4.44.0
- PyTorch: 2.4.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.