metadata
language:
- en
license: cc-by-nc-4.0
tags:
- merge
base_model:
- EmbeddedLLM/Mistral-7B-Merge-14-v0
- janai-hq/trinity-v1
model-index:
- name: Mistral-7B-Merge-14-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 69.11
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.7
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.34
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.43
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.19
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.6
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
name: Open LLM Leaderboard
Update 2023-12-19
In light of dataset contamination issue among the merged models raised by the community in recent days, in particular berkeley-nest/Starling-LM-7B-alpha, Q-bert/MetaMath-Cybertron-Starling, and janai-hq/trinity-v1, we decided to remake another model without the models mentioned. Additionally, their CC-by-NC-4.0 license is restrictive and thus are not suitable for an open model.
Model Description
This is an experiment to test merging 14 models using DARE TIES 🦙
The merged model is then merged again with janai-hq/trinity-v1 using Gradient SLERP. The result is a base model that performs quite well but requires some further instruction fine-tuning.
The 14 models are as follows:
- mistralai/Mistral-7B-Instruct-v0.2
- ehartford/dolphin-2.2.1-mistral-7b
- SciPhi/SciPhi-Mistral-7B-32k
- ehartford/samantha-1.2-mistral-7b
- Arc53/docsgpt-7b-mistral
- berkeley-nest/Starling-LM-7B-alpha
- Q-bert/MetaMath-Cybertron-Starling
- Open-Orca/Mistral-7B-OpenOrca
- v1olet/v1olet_marcoroni-go-bruins-merge-7B
- beowolx/MistralHermes-CodePro-7B-v1
- TIGER-Lab/MAmmoTH-7B-Mistral
- teknium/OpenHermes-2.5-Mistral-7B
- Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
- mlabonne/NeuralHermes-2.5-Mistral-7B
- base model: mistralai/Mistral-7B-v0.1
The yaml config file for this model is here:
slices:
- sources:
- model: EmbeddedLLM/Mistral-7B-Merge-14-v0
layer_range: [0, 32]
- model: janai-hq/trinity-v1
layer_range: [0, 32]
merge_method: slerp
base_model: EmbeddedLLM/Mistral-7B-Merge-14-v0
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.39 |
AI2 Reasoning Challenge (25-Shot) | 69.11 |
HellaSwag (10-Shot) | 86.70 |
MMLU (5-Shot) | 65.34 |
TruthfulQA (0-shot) | 63.43 |
Winogrande (5-shot) | 80.19 |
GSM8k (5-shot) | 69.60 |