leaderboard-pr-bot's picture
Adding Evaluation Results
31c4c33 verified
|
raw
history blame
6.42 kB
metadata
language:
  - en
license: cc-by-nc-4.0
tags:
  - merge
base_model:
  - EmbeddedLLM/Mistral-7B-Merge-14-v0
  - janai-hq/trinity-v1
model-index:
  - name: Mistral-7B-Merge-14-v0.1
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 69.11
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 86.7
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.34
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 63.43
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 80.19
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 69.6
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=EmbeddedLLM/Mistral-7B-Merge-14-v0.1
          name: Open LLM Leaderboard

Update 2023-12-19

In light of dataset contamination issue among the merged models raised by the community in recent days, in particular berkeley-nest/Starling-LM-7B-alpha, Q-bert/MetaMath-Cybertron-Starling, and janai-hq/trinity-v1, we decided to remake another model without the models mentioned. Additionally, their CC-by-NC-4.0 license is restrictive and thus are not suitable for an open model.

Model Description

This is an experiment to test merging 14 models using DARE TIES 🦙

The merged model is then merged again with janai-hq/trinity-v1 using Gradient SLERP. The result is a base model that performs quite well but requires some further instruction fine-tuning.

The 14 models are as follows:

  1. mistralai/Mistral-7B-Instruct-v0.2
  2. ehartford/dolphin-2.2.1-mistral-7b
  3. SciPhi/SciPhi-Mistral-7B-32k
  4. ehartford/samantha-1.2-mistral-7b
  5. Arc53/docsgpt-7b-mistral
  6. berkeley-nest/Starling-LM-7B-alpha
  7. Q-bert/MetaMath-Cybertron-Starling
  8. Open-Orca/Mistral-7B-OpenOrca
  9. v1olet/v1olet_marcoroni-go-bruins-merge-7B
  10. beowolx/MistralHermes-CodePro-7B-v1
  11. TIGER-Lab/MAmmoTH-7B-Mistral
  12. teknium/OpenHermes-2.5-Mistral-7B
  13. Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp
  14. mlabonne/NeuralHermes-2.5-Mistral-7B

The yaml config file for this model is here:

slices:
  - sources:
      - model: EmbeddedLLM/Mistral-7B-Merge-14-v0
        layer_range: [0, 32]
      - model: janai-hq/trinity-v1
        layer_range: [0, 32]
merge_method: slerp
base_model: EmbeddedLLM/Mistral-7B-Merge-14-v0
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 72.39
AI2 Reasoning Challenge (25-Shot) 69.11
HellaSwag (10-Shot) 86.70
MMLU (5-Shot) 65.34
TruthfulQA (0-shot) 63.43
Winogrande (5-shot) 80.19
GSM8k (5-shot) 69.60