|
--- |
|
license: llama2 |
|
base_model: codellama/CodeLlama-7b-Instruct-hf |
|
tags: |
|
- generated_from_trainer |
|
library_name: peft |
|
model-index: |
|
- name: work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-no-name-ft/lora-codellama-7b-123 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
adapter: lora |
|
base_model: codellama/CodeLlama-7b-Instruct-hf |
|
base_model_config: codellama/CodeLlama-7b-Instruct-hf |
|
bf16: true |
|
dataset_prepared_path: null |
|
datasets: |
|
- path: /work/10283/sarella/ls6/exlong-internal/_work/setup/conditionnestack2e-no-name-ft/train/train/train-conditionnestack2e-no-name-ft.jsonl |
|
type: |
|
field_input: input |
|
field_instruction: instruction |
|
field_output: output |
|
field_system: system |
|
format: '{instruction}' |
|
no_input_format: '{instruction}' |
|
system_format: '{system}' |
|
system_prompt: You are a helpful programming assistant and an expert Java programmer. |
|
You are helping a user writing exceptional-behavior tests for their Java code. |
|
debug: null |
|
deepspeed: null |
|
early_stopping_patience: null |
|
eval_sample_packing: false |
|
eval_steps: 20 |
|
flash_attention: true |
|
fp16: false |
|
fsdp: null |
|
fsdp_config: null |
|
gradient_accumulation_steps: 8 |
|
gradient_checkpointing: true |
|
group_by_length: false |
|
is_llama_derived_model: true |
|
learning_rate: 0.0002 |
|
load_in_4bit: false |
|
load_in_8bit: true |
|
local_rank: null |
|
logging_steps: 1 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_fan_in_fan_out: null |
|
lora_model_dir: null |
|
lora_r: 32 |
|
lora_target_linear: true |
|
lr_scheduler: cosine |
|
micro_batch_size: 4 |
|
model_type: LlamaForCausalLM |
|
num_epochs: 3 |
|
optimizer: adamw_bnb_8bit |
|
output_dir: /work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-no-name-ft/lora-codellama-7b-123 |
|
pad_to_sequence_len: true |
|
resume_from_checkpoint: null |
|
sample_packing: true |
|
save_steps: null |
|
seed: 123 |
|
sequence_len: 4096 |
|
special_tokens: |
|
bos_token: <s> |
|
eos_token: </s> |
|
unk_token: <unk> |
|
strict: false |
|
tf32: false |
|
tokenizer_type: CodeLlamaTokenizer |
|
train_on_inputs: false |
|
val_set_size: 0.01 |
|
wandb_entity: null |
|
wandb_log_model: null |
|
wandb_project: null |
|
wandb_run_id: null |
|
wandb_watch: null |
|
warmup_steps: 10 |
|
weight_decay: 0.0 |
|
xformers_attention: null |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# work/10283/sarella/ls6/exlong-internal/_work/exp/conditionnestack2e-no-name-ft/lora-codellama-7b-123 |
|
|
|
This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4931 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 123 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.8379 | 0.01 | 1 | 1.0354 | |
|
| 0.3779 | 0.16 | 20 | 0.4820 | |
|
| 0.3361 | 0.31 | 40 | 0.4560 | |
|
| 0.3153 | 0.47 | 60 | 0.4467 | |
|
| 0.2735 | 0.63 | 80 | 0.4457 | |
|
| 0.2437 | 0.78 | 100 | 0.4400 | |
|
| 0.2941 | 0.94 | 120 | 0.4416 | |
|
| 0.2153 | 1.08 | 140 | 0.4466 | |
|
| 0.2583 | 1.23 | 160 | 0.4499 | |
|
| 0.2026 | 1.39 | 180 | 0.4540 | |
|
| 0.185 | 1.55 | 200 | 0.4541 | |
|
| 0.2296 | 1.7 | 220 | 0.4604 | |
|
| 0.2059 | 1.86 | 240 | 0.4591 | |
|
| 0.1998 | 2.02 | 260 | 0.4626 | |
|
| 0.1879 | 2.15 | 280 | 0.4828 | |
|
| 0.1861 | 2.31 | 300 | 0.4944 | |
|
| 0.1561 | 2.47 | 320 | 0.4947 | |
|
| 0.1888 | 2.62 | 340 | 0.4939 | |
|
| 0.1665 | 2.78 | 360 | 0.4945 | |
|
| 0.1627 | 2.94 | 380 | 0.4931 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.0 |