Ericu950 commited on
Commit
34e041b
·
verified ·
1 Parent(s): 97f41eb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -7
README.md CHANGED
@@ -113,17 +113,24 @@ Suggestion 1: 71
113
 
114
  If you don’t have access to a larger GPU but want to try the model out, you can run it in a quantized format in Google Colab. **The quality of the responses might deteriorate significantly.** Follow these steps:
115
 
116
- ### Step 1: Install Dependencies
117
- ```
 
 
 
 
 
 
 
 
 
118
  !pip install -U bitsandbytes
119
  import os
120
  os._exit(00)
121
  ```
122
 
123
- ### Step 2: Download and quantize the model
124
-
125
  ```python
126
-
127
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
128
  import torch
129
 
@@ -145,8 +152,8 @@ generation_pipeline = pipeline(
145
  device_map="auto",
146
  )
147
  ```
148
- ### Step 3: Run inference on a papyrus fragment of your choice
149
- ```
150
  # This is a rough transcription of Pap.Ups. 106
151
  papyrus_edition = """
152
  ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------
 
113
 
114
  If you don’t have access to a larger GPU but want to try the model out, you can run it in a quantized format in Google Colab. **The quality of the responses might deteriorate significantly.** Follow these steps:
115
 
116
+ ### Step 1: Connect to free GPU
117
+ 1. Click Connect arrow_drop_down near the top right of the notebook.
118
+ 2. Select Change runtime type.
119
+ 3. In the modal window, select T4 GPU as your hardware accelerator.
120
+ 4. Click Save.
121
+ 5. Click the Connect button to connect to your runtime. After some time, the button will present a green checkmark, along with RAM and disk usage graphs. This indicates that a server has successfully been created with your required hardware.
122
+
123
+
124
+ ### Step 2: Install Dependencies
125
+
126
+ ```python
127
  !pip install -U bitsandbytes
128
  import os
129
  os._exit(00)
130
  ```
131
 
132
+ ### Step 3: Download and quantize the model
 
133
  ```python
 
134
  from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
135
  import torch
136
 
 
152
  device_map="auto",
153
  )
154
  ```
155
+ ### Step 4: Run inference on a papyrus fragment of your choice
156
+ ```python
157
  # This is a rough transcription of Pap.Ups. 106
158
  papyrus_edition = """
159
  ετουσ τεταρτου αυτοκρατοροσ καισαροσ ουεσπασιανου σεβαστου ------------------