mist-zh / README.md
Erin's picture
Upload README.md
28887cb
|
raw
history blame
24.9 kB
metadata
tags:
  - mteb
model-index:
  - name: mist-zh
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 44.734816122831546
          - type: cos_sim_spearman
            value: 46.97006123331873
          - type: euclidean_pearson
            value: 45.38062036005061
          - type: euclidean_spearman
            value: 46.97006123331873
          - type: manhattan_pearson
            value: 45.25100462997557
          - type: manhattan_spearman
            value: 46.85418008817015
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 49.23835317471939
          - type: cos_sim_spearman
            value: 51.29611473119322
          - type: euclidean_pearson
            value: 53.41533188991713
          - type: euclidean_spearman
            value: 51.29611360495954
          - type: manhattan_pearson
            value: 53.42662771302782
          - type: manhattan_spearman
            value: 51.29682402789285
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 38.855999999999995
          - type: f1
            value: 36.96137480741953
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 61.79575529204537
          - type: cos_sim_spearman
            value: 64.96308773217001
          - type: euclidean_pearson
            value: 63.38747223113914
          - type: euclidean_spearman
            value: 64.96309119412786
          - type: manhattan_pearson
            value: 63.36833986897711
          - type: manhattan_spearman
            value: 64.95000035386369
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 40.26570556670306
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 37.68621168788469
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 84.40938491415716
          - type: mrr
            value: 86.86722222222222
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 85.2507433210034
          - type: mrr
            value: 87.58742063492063
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 24.043999999999997
          - type: map_at_10
            value: 35.311
          - type: map_at_100
            value: 37.125
          - type: map_at_1000
            value: 37.26
          - type: map_at_3
            value: 31.342
          - type: map_at_5
            value: 33.613
          - type: mrr_at_1
            value: 36.909
          - type: mrr_at_10
            value: 44.373000000000005
          - type: mrr_at_100
            value: 45.367000000000004
          - type: mrr_at_1000
            value: 45.422000000000004
          - type: mrr_at_3
            value: 41.927
          - type: mrr_at_5
            value: 43.292
          - type: ndcg_at_1
            value: 36.909
          - type: ndcg_at_10
            value: 41.666
          - type: ndcg_at_100
            value: 48.915
          - type: ndcg_at_1000
            value: 51.348000000000006
          - type: ndcg_at_3
            value: 36.592
          - type: ndcg_at_5
            value: 38.787
          - type: precision_at_1
            value: 36.909
          - type: precision_at_10
            value: 9.327
          - type: precision_at_100
            value: 1.5230000000000001
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 20.671999999999997
          - type: precision_at_5
            value: 15.179
          - type: recall_at_1
            value: 24.043999999999997
          - type: recall_at_10
            value: 51.370000000000005
          - type: recall_at_100
            value: 81.569
          - type: recall_at_1000
            value: 98.053
          - type: recall_at_3
            value: 36.120000000000005
          - type: recall_at_5
            value: 42.829
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 75.92303066746842
          - type: cos_sim_ap
            value: 84.39741959629595
          - type: cos_sim_f1
            value: 77.28710064333224
          - type: cos_sim_precision
            value: 72.41520228851655
          - type: cos_sim_recall
            value: 82.8618190320318
          - type: dot_accuracy
            value: 75.92303066746842
          - type: dot_ap
            value: 84.39592659189601
          - type: dot_f1
            value: 77.28710064333224
          - type: dot_precision
            value: 72.41520228851655
          - type: dot_recall
            value: 82.8618190320318
          - type: euclidean_accuracy
            value: 75.92303066746842
          - type: euclidean_ap
            value: 84.39741904478117
          - type: euclidean_f1
            value: 77.28710064333224
          - type: euclidean_precision
            value: 72.41520228851655
          - type: euclidean_recall
            value: 82.8618190320318
          - type: manhattan_accuracy
            value: 75.83884546001202
          - type: manhattan_ap
            value: 84.39482592167423
          - type: manhattan_f1
            value: 77.2419718612394
          - type: manhattan_precision
            value: 71.43424711958681
          - type: manhattan_recall
            value: 84.07762450315643
          - type: max_accuracy
            value: 75.92303066746842
          - type: max_ap
            value: 84.39741959629595
          - type: max_f1
            value: 77.28710064333224
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 67.65
          - type: map_at_10
            value: 75.672
          - type: map_at_100
            value: 76.005
          - type: map_at_1000
            value: 76.007
          - type: map_at_3
            value: 73.867
          - type: map_at_5
            value: 74.949
          - type: mrr_at_1
            value: 67.756
          - type: mrr_at_10
            value: 75.64
          - type: mrr_at_100
            value: 75.973
          - type: mrr_at_1000
            value: 75.97500000000001
          - type: mrr_at_3
            value: 73.867
          - type: mrr_at_5
            value: 74.984
          - type: ndcg_at_1
            value: 67.861
          - type: ndcg_at_10
            value: 79.393
          - type: ndcg_at_100
            value: 81.04400000000001
          - type: ndcg_at_1000
            value: 81.15299999999999
          - type: ndcg_at_3
            value: 75.767
          - type: ndcg_at_5
            value: 77.714
          - type: precision_at_1
            value: 67.861
          - type: precision_at_10
            value: 9.199
          - type: precision_at_100
            value: 0.9979999999999999
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 27.222
          - type: precision_at_5
            value: 17.302
          - type: recall_at_1
            value: 67.65
          - type: recall_at_10
            value: 90.938
          - type: recall_at_100
            value: 98.736
          - type: recall_at_1000
            value: 99.684
          - type: recall_at_3
            value: 81.138
          - type: recall_at_5
            value: 85.827
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 25.407000000000004
          - type: map_at_10
            value: 79.001
          - type: map_at_100
            value: 81.98299999999999
          - type: map_at_1000
            value: 82.021
          - type: map_at_3
            value: 54.25600000000001
          - type: map_at_5
            value: 68.918
          - type: mrr_at_1
            value: 89.14999999999999
          - type: mrr_at_10
            value: 92.548
          - type: mrr_at_100
            value: 92.61399999999999
          - type: mrr_at_1000
            value: 92.616
          - type: mrr_at_3
            value: 92.175
          - type: mrr_at_5
            value: 92.432
          - type: ndcg_at_1
            value: 89.14999999999999
          - type: ndcg_at_10
            value: 86.588
          - type: ndcg_at_100
            value: 89.48700000000001
          - type: ndcg_at_1000
            value: 89.84100000000001
          - type: ndcg_at_3
            value: 85.00999999999999
          - type: ndcg_at_5
            value: 84.301
          - type: precision_at_1
            value: 89.14999999999999
          - type: precision_at_10
            value: 41.71
          - type: precision_at_100
            value: 4.807
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 76.417
          - type: precision_at_5
            value: 64.95
          - type: recall_at_1
            value: 25.407000000000004
          - type: recall_at_10
            value: 88.221
          - type: recall_at_100
            value: 97.527
          - type: recall_at_1000
            value: 99.396
          - type: recall_at_3
            value: 56.751
          - type: recall_at_5
            value: 74.191
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 47.599999999999994
          - type: map_at_10
            value: 57.15
          - type: map_at_100
            value: 57.789
          - type: map_at_1000
            value: 57.80800000000001
          - type: map_at_3
            value: 54.467
          - type: map_at_5
            value: 56.016999999999996
          - type: mrr_at_1
            value: 47.599999999999994
          - type: mrr_at_10
            value: 57.15
          - type: mrr_at_100
            value: 57.789
          - type: mrr_at_1000
            value: 57.80800000000001
          - type: mrr_at_3
            value: 54.467
          - type: mrr_at_5
            value: 56.016999999999996
          - type: ndcg_at_1
            value: 47.599999999999994
          - type: ndcg_at_10
            value: 62.304
          - type: ndcg_at_100
            value: 65.32900000000001
          - type: ndcg_at_1000
            value: 65.837
          - type: ndcg_at_3
            value: 56.757000000000005
          - type: ndcg_at_5
            value: 59.575
          - type: precision_at_1
            value: 47.599999999999994
          - type: precision_at_10
            value: 7.870000000000001
          - type: precision_at_100
            value: 0.9259999999999999
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 21.133
          - type: precision_at_5
            value: 14.06
          - type: recall_at_1
            value: 47.599999999999994
          - type: recall_at_10
            value: 78.7
          - type: recall_at_100
            value: 92.60000000000001
          - type: recall_at_1000
            value: 96.6
          - type: recall_at_3
            value: 63.4
          - type: recall_at_5
            value: 70.3
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 48.28010773374375
          - type: f1
            value: 35.536995302144916
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 84.8405253283302
          - type: ap
            value: 52.35323515091401
          - type: f1
            value: 79.50069160202494
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 69.68404288794713
          - type: cos_sim_spearman
            value: 77.06824442481803
          - type: euclidean_pearson
            value: 75.47746745802166
          - type: euclidean_spearman
            value: 77.06825328995878
          - type: manhattan_pearson
            value: 75.46220581621667
          - type: manhattan_spearman
            value: 77.05100926919137
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 65.36800000000001
          - type: map_at_10
            value: 74.29400000000001
          - type: map_at_100
            value: 74.653
          - type: map_at_1000
            value: 74.664
          - type: map_at_3
            value: 72.416
          - type: map_at_5
            value: 73.658
          - type: mrr_at_1
            value: 67.50699999999999
          - type: mrr_at_10
            value: 74.85300000000001
          - type: mrr_at_100
            value: 75.17399999999999
          - type: mrr_at_1000
            value: 75.184
          - type: mrr_at_3
            value: 73.235
          - type: mrr_at_5
            value: 74.298
          - type: ndcg_at_1
            value: 67.50699999999999
          - type: ndcg_at_10
            value: 77.948
          - type: ndcg_at_100
            value: 79.55499999999999
          - type: ndcg_at_1000
            value: 79.864
          - type: ndcg_at_3
            value: 74.434
          - type: ndcg_at_5
            value: 76.504
          - type: precision_at_1
            value: 67.50699999999999
          - type: precision_at_10
            value: 9.423
          - type: precision_at_100
            value: 1.022
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 27.975
          - type: precision_at_5
            value: 17.891000000000002
          - type: recall_at_1
            value: 65.36800000000001
          - type: recall_at_10
            value: 88.633
          - type: recall_at_100
            value: 95.889
          - type: recall_at_1000
            value: 98.346
          - type: recall_at_3
            value: 79.404
          - type: recall_at_5
            value: 84.292
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.45124411566913
          - type: f1
            value: 64.77175074397455
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.08002689979824
          - type: f1
            value: 72.65358173635958
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 48.699999999999996
          - type: map_at_10
            value: 54.871
          - type: map_at_100
            value: 55.381
          - type: map_at_1000
            value: 55.43599999999999
          - type: map_at_3
            value: 53.367
          - type: map_at_5
            value: 54.257
          - type: mrr_at_1
            value: 48.699999999999996
          - type: mrr_at_10
            value: 54.871
          - type: mrr_at_100
            value: 55.381
          - type: mrr_at_1000
            value: 55.43599999999999
          - type: mrr_at_3
            value: 53.367
          - type: mrr_at_5
            value: 54.257
          - type: ndcg_at_1
            value: 48.699999999999996
          - type: ndcg_at_10
            value: 57.94200000000001
          - type: ndcg_at_100
            value: 60.75000000000001
          - type: ndcg_at_1000
            value: 62.400999999999996
          - type: ndcg_at_3
            value: 54.867
          - type: ndcg_at_5
            value: 56.493
          - type: precision_at_1
            value: 48.699999999999996
          - type: precision_at_10
            value: 6.76
          - type: precision_at_100
            value: 0.815
          - type: precision_at_1000
            value: 0.095
          - type: precision_at_3
            value: 19.733
          - type: precision_at_5
            value: 12.64
          - type: recall_at_1
            value: 48.699999999999996
          - type: recall_at_10
            value: 67.60000000000001
          - type: recall_at_100
            value: 81.5
          - type: recall_at_1000
            value: 94.89999999999999
          - type: recall_at_3
            value: 59.199999999999996
          - type: recall_at_5
            value: 63.2
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 71.27000000000001
          - type: f1
            value: 70.46516219039894
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 69.89713048186248
          - type: cos_sim_ap
            value: 74.75296949416844
          - type: cos_sim_f1
            value: 73.0820399113082
          - type: cos_sim_precision
            value: 62.99694189602446
          - type: cos_sim_recall
            value: 87.0116156282999
          - type: dot_accuracy
            value: 69.89713048186248
          - type: dot_ap
            value: 74.75289228002875
          - type: dot_f1
            value: 73.0820399113082
          - type: dot_precision
            value: 62.99694189602446
          - type: dot_recall
            value: 87.0116156282999
          - type: euclidean_accuracy
            value: 69.89713048186248
          - type: euclidean_ap
            value: 74.75289228002875
          - type: euclidean_f1
            value: 73.0820399113082
          - type: euclidean_precision
            value: 62.99694189602446
          - type: euclidean_recall
            value: 87.0116156282999
          - type: manhattan_accuracy
            value: 69.9512723335138
          - type: manhattan_ap
            value: 74.63572749955489
          - type: manhattan_f1
            value: 72.80663465735486
          - type: manhattan_precision
            value: 62.05357142857143
          - type: manhattan_recall
            value: 88.0675818373812
          - type: max_accuracy
            value: 69.9512723335138
          - type: max_ap
            value: 74.75296949416844
          - type: max_f1
            value: 73.0820399113082
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 91.38
          - type: ap
            value: 89.14371766660247
          - type: f1
            value: 91.3668296299526
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 23.621683997579606
          - type: cos_sim_spearman
            value: 29.46714129804792
          - type: euclidean_pearson
            value: 29.841725912733487
          - type: euclidean_spearman
            value: 29.466951993706992
          - type: manhattan_pearson
            value: 29.853598937043625
          - type: manhattan_spearman
            value: 29.42340511723847
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 34.86196986379606
          - type: cos_sim_spearman
            value: 37.316873994339986
          - type: euclidean_pearson
            value: 35.52672274329054
          - type: euclidean_spearman
            value: 37.316799507511014
          - type: manhattan_pearson
            value: 35.55879437844226
          - type: manhattan_spearman
            value: 37.369433247035474
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 68.7924534800626
          - type: cos_sim_spearman
            value: 69.45014686127368
          - type: euclidean_pearson
            value: 69.12500964503516
          - type: euclidean_spearman
            value: 69.45014686127368
          - type: manhattan_pearson
            value: 70.53825064823806
          - type: manhattan_spearman
            value: 70.67595198226869
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 79.02281275805849
          - type: cos_sim_spearman
            value: 79.69275718339352
          - type: euclidean_pearson
            value: 79.39660648560955
          - type: euclidean_spearman
            value: 79.69291851788452
          - type: manhattan_pearson
            value: 79.3382690172365
          - type: manhattan_spearman
            value: 79.63605584076028
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 66.1994271234341
          - type: mrr
            value: 75.76681067371655
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.594
          - type: map_at_10
            value: 75.27199999999999
          - type: map_at_100
            value: 78.96
          - type: map_at_1000
            value: 79.032
          - type: map_at_3
            value: 52.76
          - type: map_at_5
            value: 64.967
          - type: mrr_at_1
            value: 88.721
          - type: mrr_at_10
            value: 91.38
          - type: mrr_at_100
            value: 91.484
          - type: mrr_at_1000
            value: 91.489
          - type: mrr_at_3
            value: 90.901
          - type: mrr_at_5
            value: 91.21000000000001
          - type: ndcg_at_1
            value: 88.721
          - type: ndcg_at_10
            value: 83.099
          - type: ndcg_at_100
            value: 86.938
          - type: ndcg_at_1000
            value: 87.644
          - type: ndcg_at_3
            value: 84.573
          - type: ndcg_at_5
            value: 83.131
          - type: precision_at_1
            value: 88.721
          - type: precision_at_10
            value: 41.506
          - type: precision_at_100
            value: 4.99
          - type: precision_at_1000
            value: 0.515
          - type: precision_at_3
            value: 74.214
          - type: precision_at_5
            value: 62.244
          - type: recall_at_1
            value: 26.594
          - type: recall_at_10
            value: 82.121
          - type: recall_at_100
            value: 94.643
          - type: recall_at_1000
            value: 98.261
          - type: recall_at_3
            value: 54.539
          - type: recall_at_5
            value: 68.573
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 51.845
          - type: f1
            value: 49.97529772676145
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 62.34936773593232
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 58.65057354232379
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 52.2
          - type: map_at_10
            value: 62.669
          - type: map_at_100
            value: 63.239000000000004
          - type: map_at_1000
            value: 63.253
          - type: map_at_3
            value: 60.267
          - type: map_at_5
            value: 61.772000000000006
          - type: mrr_at_1
            value: 52.2
          - type: mrr_at_10
            value: 62.669
          - type: mrr_at_100
            value: 63.239000000000004
          - type: mrr_at_1000
            value: 63.253
          - type: mrr_at_3
            value: 60.267
          - type: mrr_at_5
            value: 61.772000000000006
          - type: ndcg_at_1
            value: 52.2
          - type: ndcg_at_10
            value: 67.583
          - type: ndcg_at_100
            value: 70.30499999999999
          - type: ndcg_at_1000
            value: 70.652
          - type: ndcg_at_3
            value: 62.775999999999996
          - type: ndcg_at_5
            value: 65.47
          - type: precision_at_1
            value: 52.2
          - type: precision_at_10
            value: 8.290000000000001
          - type: precision_at_100
            value: 0.955
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 23.333000000000002
          - type: precision_at_5
            value: 15.299999999999999
          - type: recall_at_1
            value: 52.2
          - type: recall_at_10
            value: 82.89999999999999
          - type: recall_at_100
            value: 95.5
          - type: recall_at_1000
            value: 98.2
          - type: recall_at_3
            value: 70
          - type: recall_at_5
            value: 76.5
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 86.64999999999999
          - type: ap
            value: 69.90209999390807
          - type: f1
            value: 84.9231810656075