mist-zh / README.md
Erin's picture
Upload README.md
edbaeef
|
raw
history blame
25 kB
metadata
tags:
  - mteb
model-index:
  - name: mist-zh
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 44.80910972039708
          - type: cos_sim_spearman
            value: 46.97947004057185
          - type: euclidean_pearson
            value: 45.36774158404125
          - type: euclidean_spearman
            value: 46.97947004232487
          - type: manhattan_pearson
            value: 45.23486628014998
          - type: manhattan_spearman
            value: 46.87721960765866
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 49.5294624928126
          - type: cos_sim_spearman
            value: 51.34771777448503
          - type: euclidean_pearson
            value: 53.56859824288157
          - type: euclidean_spearman
            value: 51.34771439634126
          - type: manhattan_pearson
            value: 53.581640877132685
          - type: manhattan_spearman
            value: 51.349656519071274
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 39.318
          - type: f1
            value: 37.37720144558489
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 62.12016334764962
          - type: cos_sim_spearman
            value: 65.08208654969742
          - type: euclidean_pearson
            value: 63.53078822303454
          - type: euclidean_spearman
            value: 65.0820865487212
          - type: manhattan_pearson
            value: 63.510532363654725
          - type: manhattan_spearman
            value: 65.06622789125241
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 39.5071157612481
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 37.99964332311132
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 84.67010533089491
          - type: mrr
            value: 86.99488095238095
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 85.27288868896477
          - type: mrr
            value: 87.5929761904762
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 23.949
          - type: map_at_10
            value: 35.394
          - type: map_at_100
            value: 37.235
          - type: map_at_1000
            value: 37.364999999999995
          - type: map_at_3
            value: 31.433
          - type: map_at_5
            value: 33.668
          - type: mrr_at_1
            value: 36.834
          - type: mrr_at_10
            value: 44.451
          - type: mrr_at_100
            value: 45.445
          - type: mrr_at_1000
            value: 45.501000000000005
          - type: mrr_at_3
            value: 42.010999999999996
          - type: mrr_at_5
            value: 43.34
          - type: ndcg_at_1
            value: 36.834
          - type: ndcg_at_10
            value: 41.803000000000004
          - type: ndcg_at_100
            value: 49.091
          - type: ndcg_at_1000
            value: 51.474
          - type: ndcg_at_3
            value: 36.736000000000004
          - type: ndcg_at_5
            value: 38.868
          - type: precision_at_1
            value: 36.834
          - type: precision_at_10
            value: 9.354999999999999
          - type: precision_at_100
            value: 1.5310000000000001
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 20.78
          - type: precision_at_5
            value: 15.238999999999999
          - type: recall_at_1
            value: 23.949
          - type: recall_at_10
            value: 51.68000000000001
          - type: recall_at_100
            value: 81.938
          - type: recall_at_1000
            value: 98.091
          - type: recall_at_3
            value: 36.408
          - type: recall_at_5
            value: 42.952
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 76.24774503908598
          - type: cos_sim_ap
            value: 84.76081551540754
          - type: cos_sim_f1
            value: 77.76321537789427
          - type: cos_sim_precision
            value: 72.96577167452347
          - type: cos_sim_recall
            value: 83.23591302314706
          - type: dot_accuracy
            value: 76.24774503908598
          - type: dot_ap
            value: 84.75968761251127
          - type: dot_f1
            value: 77.76321537789427
          - type: dot_precision
            value: 72.96577167452347
          - type: dot_recall
            value: 83.23591302314706
          - type: euclidean_accuracy
            value: 76.24774503908598
          - type: euclidean_ap
            value: 84.7608250840413
          - type: euclidean_f1
            value: 77.76321537789427
          - type: euclidean_precision
            value: 72.96577167452347
          - type: euclidean_recall
            value: 83.23591302314706
          - type: manhattan_accuracy
            value: 76.19963920625375
          - type: manhattan_ap
            value: 84.76313920535411
          - type: manhattan_f1
            value: 77.74253527288636
          - type: manhattan_precision
            value: 73.0374023838882
          - type: manhattan_recall
            value: 83.09562777647884
          - type: max_accuracy
            value: 76.24774503908598
          - type: max_ap
            value: 84.76313920535411
          - type: max_f1
            value: 77.76321537789427
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 66.149
          - type: map_at_10
            value: 75.22999999999999
          - type: map_at_100
            value: 75.536
          - type: map_at_1000
            value: 75.542
          - type: map_at_3
            value: 73.384
          - type: map_at_5
            value: 74.459
          - type: mrr_at_1
            value: 66.28
          - type: mrr_at_10
            value: 75.232
          - type: mrr_at_100
            value: 75.52799999999999
          - type: mrr_at_1000
            value: 75.534
          - type: mrr_at_3
            value: 73.446
          - type: mrr_at_5
            value: 74.473
          - type: ndcg_at_1
            value: 66.386
          - type: ndcg_at_10
            value: 79.295
          - type: ndcg_at_100
            value: 80.741
          - type: ndcg_at_1000
            value: 80.891
          - type: ndcg_at_3
            value: 75.613
          - type: ndcg_at_5
            value: 77.46300000000001
          - type: precision_at_1
            value: 66.386
          - type: precision_at_10
            value: 9.283
          - type: precision_at_100
            value: 0.996
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 27.503
          - type: precision_at_5
            value: 17.408
          - type: recall_at_1
            value: 66.149
          - type: recall_at_10
            value: 91.886
          - type: recall_at_100
            value: 98.52499999999999
          - type: recall_at_1000
            value: 99.684
          - type: recall_at_3
            value: 81.849
          - type: recall_at_5
            value: 86.275
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 25.166
          - type: map_at_10
            value: 78.805
          - type: map_at_100
            value: 81.782
          - type: map_at_1000
            value: 81.818
          - type: map_at_3
            value: 54.226
          - type: map_at_5
            value: 68.783
          - type: mrr_at_1
            value: 88.6
          - type: mrr_at_10
            value: 92.244
          - type: mrr_at_100
            value: 92.31899999999999
          - type: mrr_at_1000
            value: 92.321
          - type: mrr_at_3
            value: 91.867
          - type: mrr_at_5
            value: 92.119
          - type: ndcg_at_1
            value: 88.6
          - type: ndcg_at_10
            value: 86.432
          - type: ndcg_at_100
            value: 89.357
          - type: ndcg_at_1000
            value: 89.688
          - type: ndcg_at_3
            value: 84.90299999999999
          - type: ndcg_at_5
            value: 84.137
          - type: precision_at_1
            value: 88.6
          - type: precision_at_10
            value: 41.685
          - type: precision_at_100
            value: 4.811
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 76.44999999999999
          - type: precision_at_5
            value: 64.87
          - type: recall_at_1
            value: 25.166
          - type: recall_at_10
            value: 88.227
          - type: recall_at_100
            value: 97.597
          - type: recall_at_1000
            value: 99.359
          - type: recall_at_3
            value: 56.946
          - type: recall_at_5
            value: 74.261
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 48.3
          - type: map_at_10
            value: 57.635999999999996
          - type: map_at_100
            value: 58.306000000000004
          - type: map_at_1000
            value: 58.326
          - type: map_at_3
            value: 54.900000000000006
          - type: map_at_5
            value: 56.620000000000005
          - type: mrr_at_1
            value: 48.3
          - type: mrr_at_10
            value: 57.635999999999996
          - type: mrr_at_100
            value: 58.306000000000004
          - type: mrr_at_1000
            value: 58.326
          - type: mrr_at_3
            value: 54.900000000000006
          - type: mrr_at_5
            value: 56.620000000000005
          - type: ndcg_at_1
            value: 48.3
          - type: ndcg_at_10
            value: 62.638000000000005
          - type: ndcg_at_100
            value: 65.726
          - type: ndcg_at_1000
            value: 66.253
          - type: ndcg_at_3
            value: 57.081
          - type: ndcg_at_5
            value: 60.217
          - type: precision_at_1
            value: 48.3
          - type: precision_at_10
            value: 7.85
          - type: precision_at_100
            value: 0.9249999999999999
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 21.133
          - type: precision_at_5
            value: 14.219999999999999
          - type: recall_at_1
            value: 48.3
          - type: recall_at_10
            value: 78.5
          - type: recall_at_100
            value: 92.5
          - type: recall_at_1000
            value: 96.6
          - type: recall_at_3
            value: 63.4
          - type: recall_at_5
            value: 71.1
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 47.9646017699115
          - type: f1
            value: 35.03552351349023
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 84.8968105065666
          - type: ap
            value: 52.564605306946774
          - type: f1
            value: 79.59880155481291
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 70.03662039861051
          - type: cos_sim_spearman
            value: 76.9642260444222
          - type: euclidean_pearson
            value: 75.47376966815843
          - type: euclidean_spearman
            value: 76.9642282583736
          - type: manhattan_pearson
            value: 75.45535385433548
          - type: manhattan_spearman
            value: 76.94609742735338
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 65.604
          - type: map_at_10
            value: 74.522
          - type: map_at_100
            value: 74.878
          - type: map_at_1000
            value: 74.889
          - type: map_at_3
            value: 72.61
          - type: map_at_5
            value: 73.882
          - type: mrr_at_1
            value: 67.75099999999999
          - type: mrr_at_10
            value: 75.08399999999999
          - type: mrr_at_100
            value: 75.402
          - type: mrr_at_1000
            value: 75.412
          - type: mrr_at_3
            value: 73.446
          - type: mrr_at_5
            value: 74.531
          - type: ndcg_at_1
            value: 67.75099999999999
          - type: ndcg_at_10
            value: 78.172
          - type: ndcg_at_100
            value: 79.753
          - type: ndcg_at_1000
            value: 80.06400000000001
          - type: ndcg_at_3
            value: 74.607
          - type: ndcg_at_5
            value: 76.728
          - type: precision_at_1
            value: 67.75099999999999
          - type: precision_at_10
            value: 9.443999999999999
          - type: precision_at_100
            value: 1.023
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 28.009
          - type: precision_at_5
            value: 17.934
          - type: recall_at_1
            value: 65.604
          - type: recall_at_10
            value: 88.84100000000001
          - type: recall_at_100
            value: 95.954
          - type: recall_at_1000
            value: 98.425
          - type: recall_at_3
            value: 79.497
          - type: recall_at_5
            value: 84.515
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.64963012777405
          - type: f1
            value: 65.01092085388518
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 72.9724277067922
          - type: f1
            value: 72.48003852874602
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 48.9
          - type: map_at_10
            value: 55.189
          - type: map_at_100
            value: 55.687
          - type: map_at_1000
            value: 55.74400000000001
          - type: map_at_3
            value: 53.75
          - type: map_at_5
            value: 54.555
          - type: mrr_at_1
            value: 49.1
          - type: mrr_at_10
            value: 55.289
          - type: mrr_at_100
            value: 55.788000000000004
          - type: mrr_at_1000
            value: 55.845
          - type: mrr_at_3
            value: 53.849999999999994
          - type: mrr_at_5
            value: 54.655
          - type: ndcg_at_1
            value: 48.9
          - type: ndcg_at_10
            value: 58.275
          - type: ndcg_at_100
            value: 60.980000000000004
          - type: ndcg_at_1000
            value: 62.672000000000004
          - type: ndcg_at_3
            value: 55.282
          - type: ndcg_at_5
            value: 56.749
          - type: precision_at_1
            value: 48.9
          - type: precision_at_10
            value: 6.800000000000001
          - type: precision_at_100
            value: 0.8130000000000001
          - type: precision_at_1000
            value: 0.095
          - type: precision_at_3
            value: 19.900000000000002
          - type: precision_at_5
            value: 12.659999999999998
          - type: recall_at_1
            value: 48.9
          - type: recall_at_10
            value: 68
          - type: recall_at_100
            value: 81.3
          - type: recall_at_1000
            value: 95
          - type: recall_at_3
            value: 59.699999999999996
          - type: recall_at_5
            value: 63.3
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 71.53666666666668
          - type: f1
            value: 70.74267338218574
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 70.43854899837575
          - type: cos_sim_ap
            value: 75.25713109733296
          - type: cos_sim_f1
            value: 73.18777292576418
          - type: cos_sim_precision
            value: 62.397617274758
          - type: cos_sim_recall
            value: 88.48996832101372
          - type: dot_accuracy
            value: 70.43854899837575
          - type: dot_ap
            value: 75.25713109733296
          - type: dot_f1
            value: 73.18777292576418
          - type: dot_precision
            value: 62.397617274758
          - type: dot_recall
            value: 88.48996832101372
          - type: euclidean_accuracy
            value: 70.43854899837575
          - type: euclidean_ap
            value: 75.25713109733296
          - type: euclidean_f1
            value: 73.18777292576418
          - type: euclidean_precision
            value: 62.397617274758
          - type: euclidean_recall
            value: 88.48996832101372
          - type: manhattan_accuracy
            value: 70.60097455332972
          - type: manhattan_ap
            value: 75.22177995740668
          - type: manhattan_f1
            value: 73.13750532141337
          - type: manhattan_precision
            value: 61.26961483594865
          - type: manhattan_recall
            value: 90.70749736008447
          - type: max_accuracy
            value: 70.60097455332972
          - type: max_ap
            value: 75.25713109733296
          - type: max_f1
            value: 73.18777292576418
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 91.3
          - type: ap
            value: 89.03601366589187
          - type: f1
            value: 91.28612226957141
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 24.254041798082984
          - type: cos_sim_spearman
            value: 30.029755057178846
          - type: euclidean_pearson
            value: 30.394005237465905
          - type: euclidean_spearman
            value: 30.029751825186153
          - type: manhattan_pearson
            value: 30.400683181995863
          - type: manhattan_spearman
            value: 29.981240616043326
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 35.09911024323138
          - type: cos_sim_spearman
            value: 37.49790006053554
          - type: euclidean_pearson
            value: 35.65689785105493
          - type: euclidean_spearman
            value: 37.498032509597344
          - type: manhattan_pearson
            value: 35.68350134483341
          - type: manhattan_spearman
            value: 37.54046578100128
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 68.26707578158273
          - type: cos_sim_spearman
            value: 69.19741429899995
          - type: euclidean_pearson
            value: 68.53026048034656
          - type: euclidean_spearman
            value: 69.1974135636389
          - type: manhattan_pearson
            value: 70.02306646353263
          - type: manhattan_spearman
            value: 70.46158498712836
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 78.88749955421177
          - type: cos_sim_spearman
            value: 79.56695106617856
          - type: euclidean_pearson
            value: 79.13787024514338
          - type: euclidean_spearman
            value: 79.56690827015423
          - type: manhattan_pearson
            value: 79.08154812411563
          - type: manhattan_spearman
            value: 79.52391077945943
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 65.78663254562939
          - type: mrr
            value: 74.9786877626248
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.169999999999998
          - type: map_at_10
            value: 74.009
          - type: map_at_100
            value: 77.788
          - type: map_at_1000
            value: 77.866
          - type: map_at_3
            value: 51.861000000000004
          - type: map_at_5
            value: 63.775000000000006
          - type: mrr_at_1
            value: 87.748
          - type: mrr_at_10
            value: 90.737
          - type: mrr_at_100
            value: 90.84400000000001
          - type: mrr_at_1000
            value: 90.849
          - type: mrr_at_3
            value: 90.257
          - type: mrr_at_5
            value: 90.54299999999999
          - type: ndcg_at_1
            value: 87.748
          - type: ndcg_at_10
            value: 82.114
          - type: ndcg_at_100
            value: 86.148
          - type: ndcg_at_1000
            value: 86.913
          - type: ndcg_at_3
            value: 83.54599999999999
          - type: ndcg_at_5
            value: 81.987
          - type: precision_at_1
            value: 87.748
          - type: precision_at_10
            value: 41.076
          - type: precision_at_100
            value: 4.976
          - type: precision_at_1000
            value: 0.515
          - type: precision_at_3
            value: 73.282
          - type: precision_at_5
            value: 61.351
          - type: recall_at_1
            value: 26.169999999999998
          - type: recall_at_10
            value: 81.292
          - type: recall_at_100
            value: 94.285
          - type: recall_at_1000
            value: 98.221
          - type: recall_at_3
            value: 53.824000000000005
          - type: recall_at_5
            value: 67.547
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 51.564
          - type: f1
            value: 49.711462885083286
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 62.57078038998942
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 57.842602165392144
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 52
          - type: map_at_10
            value: 62.932
          - type: map_at_100
            value: 63.471999999999994
          - type: map_at_1000
            value: 63.483999999999995
          - type: map_at_3
            value: 60.516999999999996
          - type: map_at_5
            value: 62.097
          - type: mrr_at_1
            value: 52
          - type: mrr_at_10
            value: 62.932
          - type: mrr_at_100
            value: 63.471999999999994
          - type: mrr_at_1000
            value: 63.483999999999995
          - type: mrr_at_3
            value: 60.516999999999996
          - type: mrr_at_5
            value: 62.097
          - type: ndcg_at_1
            value: 52
          - type: ndcg_at_10
            value: 67.963
          - type: ndcg_at_100
            value: 70.598
          - type: ndcg_at_1000
            value: 70.896
          - type: ndcg_at_3
            value: 63.144
          - type: ndcg_at_5
            value: 65.988
          - type: precision_at_1
            value: 52
          - type: precision_at_10
            value: 8.36
          - type: precision_at_100
            value: 0.959
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 23.567
          - type: precision_at_5
            value: 15.52
          - type: recall_at_1
            value: 52
          - type: recall_at_10
            value: 83.6
          - type: recall_at_100
            value: 95.89999999999999
          - type: recall_at_1000
            value: 98.2
          - type: recall_at_3
            value: 70.7
          - type: recall_at_5
            value: 77.60000000000001
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 86.65999999999998
          - type: ap
            value: 69.91988858863054
          - type: f1
            value: 84.92982698422784
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 27.838972963193314
          - type: mrr
            value: 26.65238095238095