distilbert-base-uncased-finetuned-ner
This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0845
- Precision: 0.8754
- Recall: 0.9058
- F1: 0.8904
- Accuracy: 0.9763
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2529 | 1.0 | 878 | 0.0845 | 0.8754 | 0.9058 | 0.8904 | 0.9763 |
Framework versions
- Transformers 4.13.0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
- Downloads last month
- 108
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train Evgeneus/distilbert-base-uncased-finetuned-ner
Evaluation results
- Precision on conll2003self-reported0.875
- Recall on conll2003self-reported0.906
- F1 on conll2003self-reported0.890
- Accuracy on conll2003self-reported0.976