roberta-large-finetuned-abbr-finetuned-ner

This model is a fine-tuned version of surrey-nlp/roberta-large-finetuned-abbr on the plod-filtered dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0913
  • Precision: 0.9800
  • Recall: 0.9767
  • F1: 0.9784
  • Accuracy: 0.9762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0805 0.99 7000 0.0761 0.9762 0.9722 0.9742 0.9720
0.0655 1.99 14000 0.0682 0.9769 0.9748 0.9759 0.9735
0.0469 2.98 21000 0.0718 0.9787 0.9746 0.9767 0.9744
0.0336 3.98 28000 0.0851 0.9800 0.9753 0.9776 0.9753
0.0259 4.97 35000 0.0913 0.9800 0.9767 0.9784 0.9762
0.0197 5.97 42000 0.0948 0.9801 0.9774 0.9787 0.9766

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
7
Safetensors
Model size
354M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for EvgeniaKomleva/roberta-large-finetuned-abbr-finetuned-ner

Finetuned
(7)
this model
Finetunes
1 model

Evaluation results