|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-xlsr-53 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- xtreme_s |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod9 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: xtreme_s |
|
type: xtreme_s |
|
config: fleurs.id_id |
|
split: test |
|
args: fleurs.id_id |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.9842089507558749 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-XLS-R-Fleurs-demo-google-colab-Ezra_William_Prod9 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the xtreme_s dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.3012 |
|
- Wer: 0.9842 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| No log | 1.0 | 39 | 2.8812 | 1.0 | |
|
| No log | 2.0 | 78 | 2.8688 | 1.0 | |
|
| No log | 3.0 | 117 | 2.8722 | 1.0 | |
|
| No log | 4.0 | 156 | 2.8640 | 1.0 | |
|
| No log | 5.0 | 195 | 2.8447 | 1.0 | |
|
| No log | 6.0 | 234 | 2.8468 | 1.0 | |
|
| No log | 7.0 | 273 | 2.8465 | 1.0 | |
|
| No log | 8.0 | 312 | 2.8488 | 1.0 | |
|
| No log | 9.0 | 351 | 2.8355 | 1.0 | |
|
| No log | 10.0 | 390 | 2.8167 | 1.0 | |
|
| No log | 11.0 | 429 | 2.8076 | 1.0 | |
|
| No log | 12.0 | 468 | 2.7065 | 1.0 | |
|
| 2.9881 | 13.0 | 507 | 2.5506 | 1.0 | |
|
| 2.9881 | 14.0 | 546 | 2.2657 | 1.0 | |
|
| 2.9881 | 15.0 | 585 | 1.9921 | 1.0 | |
|
| 2.9881 | 16.0 | 624 | 1.7390 | 1.0 | |
|
| 2.9881 | 17.0 | 663 | 1.5309 | 1.0 | |
|
| 2.9881 | 18.0 | 702 | 1.4300 | 0.9994 | |
|
| 2.9881 | 19.0 | 741 | 1.3280 | 0.9938 | |
|
| 2.9881 | 20.0 | 780 | 1.3012 | 0.9842 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|