|
--- |
|
license: mit |
|
base_model: |
|
- numind/NuExtract-1.5-tiny |
|
pipeline_tag: text-generation |
|
tags: |
|
- openvino |
|
library_name: OpenVINO |
|
language: |
|
- multilingual |
|
--- |
|
|
|
|
|
<p align="left"> |
|
<img src="https://github.com/fabiomatricardi/NuExtract-1.5-openvino/raw/main/logo.png" width= 300> |
|
</p> |
|
|
|
|
|
# NuExtract-tiny-v1.5 by NuMind 🔥 OpenVINO |
|
|
|
NuExtract-tiny-v1.5 is a fine-tuning of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B), trained on a private high-quality dataset for structured information extraction. It supports long documents and several languages (English, French, Spanish, German, Portuguese, and Italian). |
|
To use the model, provide an input text and a JSON template describing the information you need to extract. |
|
|
|
Note: This model is trained to prioritize pure extraction, so in most cases all text generated by the model is present as is in the original text. |
|
|
|
We also provide a 3.8B version which is based on Phi-3.5-mini-instruct: [NuExtract-v1.5](https://huggingface.co/numind/NuExtract-v1.5) |
|
|
|
Check out the [blog post](https://numind.ai/blog/nuextract-1-5---multilingual-infinite-context-still-small-and-better-than-gpt-4o). |
|
|
|
Try the 3.8B model here: [Playground](https://huggingface.co/spaces/numind/NuExtract-v1.5) |
|
|
|
⚠️ We recommend using NuExtract with a temperature at or very close to 0. Some inference frameworks, such as Ollama, use a default of 0.7 which is not well suited to pure extraction tasks. |
|
|
|
## This is the OpenVINO IR format of the model, quantized in int8 |
|
The model was created with the Optimum-Intel libray cli-command |
|
#### Dependencies required to create the model |
|
There is an open clash in dependencies versions between optiumum-intel and openvino-genai |
|
> ⚠️ Exporting tokenizers to OpenVINO is not supported for tokenizers version > 0.19 and openvino version <= 2024.4. Please downgrade to tokenizers version <= 0.19 to export tokenizers to OpenVINO. |
|
|
|
|
|
So for the model conversion the only dependency you need is |
|
|
|
|
|
``` |
|
pip install -U "openvino>=2024.3.0" "openvino-genai" |
|
pip install "torch>=2.1" "nncf>=2.7" "transformers>=4.40.0" "onnx<1.16.2" "optimum>=1.16.1" "accelerate" "datasets>=2.14.6" "git+https://github.com/huggingface/optimum-intel.git" --extra-index-url https://download.pytorch.org/whl/cpu |
|
``` |
|
The instructions are from the amazing [OpenVINO notebooks](https://docs.openvino.ai/2024/notebooks/llm-question-answering-with-output.html#prerequisites)<br> |
|
vanilla pip install will create clashes among dependencies/versions<br> |
|
This command will install, among others: |
|
``` |
|
tokenizers==0.20.3 |
|
torch==2.5.1+cpu |
|
transformers==4.46.3 |
|
nncf==2.14.0 |
|
numpy==2.1.3 |
|
onnx==1.16.1 |
|
openvino==2024.5.0 |
|
openvino-genai==2024.5.0.0 |
|
openvino-telemetry==2024.5.0 |
|
openvino-tokenizers==2024.5.0.0 |
|
optimum==1.23.3 |
|
optimum-intel @ git+https://github.com/huggingface/optimum-intel.git@c454b0000279ac9801302d726fbbbc1152733315 |
|
``` |
|
|
|
|
|
#### How to quantized the original model |
|
After the previous step you are enabled to run the following command (considering that you downloaded all the model weights and files into a subfolder called `NuExtract-1.5-tiny` from the [official model repository](https://huggingface.co/numind/NuExtract-v1.5)) |
|
```bash |
|
optimum-cli export openvino --model NuExtract-1.5-tiny --task text-generation-with-past --trust-remote-code --weight-format int8 ov_NuExtract-1.5-tiny |
|
``` |
|
this will start the process and produce the following messages, without any fatal error |
|
|
|
|
|
<p align="left"> |
|
<img src="https://huggingface.co/FM-1976/ov_NuExtract-1.5-tiny/resolve/main/theRightWay.png" style="width: 600; height: auto;"> |
|
</p> |
|
|
|
|
|
|
|
#### Dependencies required to run the model with `openvino-genai` |
|
If you simply need to run already converted models into OpenVINO IR format, you need to install only openvino-genai |
|
``` |
|
pip install openvino-genai==2024.5.0 |
|
``` |
|
|
|
|
|
## How to use the model with openvino-genai |
|
considering you also have python-rich installed (that is coming together with optimum-intel... otherwise `pip install rich`) |
|
```python |
|
""" |
|
followed official tutorial |
|
https://docs.openvino.ai/2024/notebooks/llm-question-answering-with-output.html |
|
""" |
|
# MAIN IMPORTS |
|
import warnings |
|
warnings.filterwarnings(action='ignore') |
|
import datetime |
|
from rich.console import Console |
|
from rich.panel import Panel |
|
import openvino_genai as ov_genai |
|
# SETTING CONSOLE WIDTH |
|
console = Console(width=80) |
|
# LOADING THE MODEL |
|
console.print('Loading the model...', end='') |
|
model_dir = 'ov_NuExtract-1.5-tiny' |
|
pipe = ov_genai.LLMPipeline(model_dir, 'CPU') |
|
console.print('✅ done') |
|
console.print('Ready for generation') |
|
# PROMPT FORMATTING |
|
jsontemplate = """{ |
|
"Model": { |
|
"Name": "", |
|
"Number of parameters": "", |
|
"Number of max token": "", |
|
"Architecture": [] |
|
}, |
|
"Usage": { |
|
"Use case": [], |
|
"Licence": "" |
|
} |
|
}""" |
|
text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for |
|
superior performance and efficiency. Mistral 7B outperforms the best open 13B |
|
model (Llama 2) across all evaluated benchmarks, and the best released 34B |
|
model (Llama 1) in reasoning, mathematics, and code generation. Our model |
|
leverages grouped-query attention (GQA) for faster inference, coupled with sliding |
|
window attention (SWA) to effectively handle sequences of arbitrary length with a |
|
reduced inference cost. We also provide a model fine-tuned to follow instructions, |
|
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and |
|
automated benchmarks. Our models are released under the Apache 2.0 license. |
|
Code: <https://github.com/mistralai/mistral-src> |
|
Webpage: <https://mistral.ai/news/announcing-mistral-7b/>""" |
|
|
|
prompt = f"""<|input|>\n### Template: |
|
{jsontemplate} |
|
|
|
### Text: |
|
{text} |
|
<|output|> |
|
""" |
|
# START PIPELINE setting eos_token_id = 151643 |
|
start = datetime.datetime.now() |
|
with console.status("Generating json reply", spinner='dots8',): |
|
output = pipe.generate(prompt, temperature=0.2, |
|
do_sample=True, |
|
max_new_tokens=500, |
|
repetition_penalty=1.178, |
|
eos_token_id = 151643) |
|
delta = datetime.datetime.now() - start |
|
# PRINT THE OUTPUT |
|
console.print(output) |
|
console.rule() |
|
console.print(f'Generated in {delta}') |
|
|
|
``` |
|
|
|
|
|
<p align="left"> |
|
<img src="https://github.com/fabiomatricardi/NuExtract-1.5-openvino/raw/main/logo_long.png" style="width: 600; height: auto;"> |
|
</p> |
|
|
|
|
|
## An awesome Streamlit+OpenVINO interface |
|
you can find the code in [my official GitHub repository](https://github.com/fabiomatricardi/NuExtract-1.5-openvino) |
|
[](https://github.com/openvinotoolkit/awesome-openvino) |
|
You can clone the repo and use the downloaded files from this Hugging Face Model<br> |
|
Running the streamlit app will give this: |
|
|
|
<p align="left"> |
|
<img src="https://github.com/fabiomatricardi/NuExtract-1.5-openvino/raw/main/streamlitapp.png" style="width: 600; height: auto;"> |
|
</p> |
|
|
|
--- |
|
|
|
|
|
## Benchmark |
|
|
|
Zero-shot performance (English): |
|
|
|
<p align="left"> |
|
<img src="https://huggingface.co/numind/NuExtract-1.5-tiny/resolve/main/english_bench.png" style="width: 600; height: auto;"> |
|
</p> |
|
|
|
Few-shot fine-tuning: |
|
|
|
<p align="left"> |
|
<img src="https://huggingface.co/numind/NuExtract-1.5-tiny/resolve/main/fewshot_bench.png" style="width: 750; height: auto;"> |
|
</p> |
|
|
|
|
|
--- |
|
|
|
## Usage (copied from original model) |
|
|
|
To use the model: |
|
|
|
```python |
|
import json |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
def predict_NuExtract(model, tokenizer, texts, template, batch_size=1, max_length=10_000, max_new_tokens=4_000): |
|
template = json.dumps(json.loads(template), indent=4) |
|
prompts = [f"""<|input|>\n### Template:\n{template}\n### Text:\n{text}\n\n<|output|>""" for text in texts] |
|
|
|
outputs = [] |
|
with torch.no_grad(): |
|
for i in range(0, len(prompts), batch_size): |
|
batch_prompts = prompts[i:i+batch_size] |
|
batch_encodings = tokenizer(batch_prompts, return_tensors="pt", truncation=True, padding=True, max_length=max_length).to(model.device) |
|
|
|
pred_ids = model.generate(**batch_encodings, max_new_tokens=max_new_tokens) |
|
outputs += tokenizer.batch_decode(pred_ids, skip_special_tokens=True) |
|
|
|
return [output.split("<|output|>")[1] for output in outputs] |
|
|
|
model_name = "numind/NuExtract-tiny-v1.5" |
|
device = "cuda" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval() |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
text = """We introduce Mistral 7B, a 7–billion-parameter language model engineered for |
|
superior performance and efficiency. Mistral 7B outperforms the best open 13B |
|
model (Llama 2) across all evaluated benchmarks, and the best released 34B |
|
model (Llama 1) in reasoning, mathematics, and code generation. Our model |
|
leverages grouped-query attention (GQA) for faster inference, coupled with sliding |
|
window attention (SWA) to effectively handle sequences of arbitrary length with a |
|
reduced inference cost. We also provide a model fine-tuned to follow instructions, |
|
Mistral 7B – Instruct, that surpasses Llama 2 13B – chat model both on human and |
|
automated benchmarks. Our models are released under the Apache 2.0 license. |
|
Code: <https://github.com/mistralai/mistral-src> |
|
Webpage: <https://mistral.ai/news/announcing-mistral-7b/>""" |
|
|
|
template = """{ |
|
"Model": { |
|
"Name": "", |
|
"Number of parameters": "", |
|
"Number of max token": "", |
|
"Architecture": [] |
|
}, |
|
"Usage": { |
|
"Use case": [], |
|
"Licence": "" |
|
} |
|
}""" |
|
|
|
prediction = predict_NuExtract(model, tokenizer, [text], template)[0] |
|
print(prediction) |
|
|
|
``` |
|
|
|
Sliding window prompting: |
|
|
|
```python |
|
import json |
|
|
|
MAX_INPUT_SIZE = 20_000 |
|
MAX_NEW_TOKENS = 6000 |
|
|
|
def clean_json_text(text): |
|
text = text.strip() |
|
text = text.replace("\#", "#").replace("\&", "&") |
|
return text |
|
|
|
def predict_chunk(text, template, current, model, tokenizer): |
|
current = clean_json_text(current) |
|
|
|
input_llm = f"<|input|>\n### Template:\n{template}\n### Current:\n{current}\n### Text:\n{text}\n\n<|output|>" + "{" |
|
input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=MAX_INPUT_SIZE).to("cuda") |
|
output = tokenizer.decode(model.generate(**input_ids, max_new_tokens=MAX_NEW_TOKENS)[0], skip_special_tokens=True) |
|
|
|
return clean_json_text(output.split("<|output|>")[1]) |
|
|
|
def split_document(document, window_size, overlap): |
|
tokens = tokenizer.tokenize(document) |
|
print(f"\tLength of document: {len(tokens)} tokens") |
|
|
|
chunks = [] |
|
if len(tokens) > window_size: |
|
for i in range(0, len(tokens), window_size-overlap): |
|
print(f"\t{i} to {i + len(tokens[i:i + window_size])}") |
|
chunk = tokenizer.convert_tokens_to_string(tokens[i:i + window_size]) |
|
chunks.append(chunk) |
|
|
|
if i + len(tokens[i:i + window_size]) >= len(tokens): |
|
break |
|
else: |
|
chunks.append(document) |
|
print(f"\tSplit into {len(chunks)} chunks") |
|
|
|
return chunks |
|
|
|
def handle_broken_output(pred, prev): |
|
try: |
|
if all([(v in ["", []]) for v in json.loads(pred).values()]): |
|
# if empty json, return previous |
|
pred = prev |
|
except: |
|
# if broken json, return previous |
|
pred = prev |
|
|
|
return pred |
|
|
|
def sliding_window_prediction(text, template, model, tokenizer, window_size=4000, overlap=128): |
|
# split text into chunks of n tokens |
|
tokens = tokenizer.tokenize(text) |
|
chunks = split_document(text, window_size, overlap) |
|
|
|
# iterate over text chunks |
|
prev = template |
|
for i, chunk in enumerate(chunks): |
|
print(f"Processing chunk {i}...") |
|
pred = predict_chunk(chunk, template, prev, model, tokenizer) |
|
|
|
# handle broken output |
|
pred = handle_broken_output(pred, prev) |
|
|
|
# iterate |
|
prev = pred |
|
|
|
return pred |
|
``` |