|
import numpy as np
|
|
from typing import List, Tuple
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from zipfile import ZipFile
|
|
|
|
|
|
@dataclass
|
|
class Pose:
|
|
image_name: str
|
|
q: np.ndarray
|
|
t: np.ndarray
|
|
inliers: float
|
|
|
|
def __str__(self) -> str:
|
|
formatter = {'float': lambda v: f'{v:.6f}'}
|
|
max_line_width = 1000
|
|
q_str = np.array2string(self.q, formatter=formatter, max_line_width=max_line_width)[1:-1]
|
|
t_str = np.array2string(self.t, formatter=formatter, max_line_width=max_line_width)[1:-1]
|
|
return f'{self.image_name} {q_str} {t_str} {self.inliers}'
|
|
|
|
|
|
def save_submission(results_dict: dict, output_path: Path):
|
|
with ZipFile(output_path, 'w') as zip:
|
|
for scene, poses in results_dict.items():
|
|
poses_str = '\n'.join((str(pose) for pose in poses))
|
|
zip.writestr(f'pose_{scene}.txt', poses_str.encode('utf-8'))
|
|
|
|
|
|
|
|
def project(pts: np.ndarray, K: np.ndarray, img_size: List[int] or Tuple[int] = None) -> np.ndarray:
|
|
"""Projects 3D points to image plane.
|
|
|
|
Args:
|
|
- pts [N, 3/4]: points in camera coordinates (homogeneous or non-homogeneous)
|
|
- K [3, 3]: intrinsic matrix
|
|
- img_size (width, height): optional, clamp projection to image borders
|
|
Outputs:
|
|
- uv [N, 2]: coordinates of projected points
|
|
"""
|
|
|
|
assert len(pts.shape) == 2, 'incorrect number of dimensions'
|
|
assert pts.shape[1] in [3, 4], 'invalid dimension size'
|
|
assert K.shape == (3, 3), 'incorrect intrinsic shape'
|
|
|
|
uv_h = (K @ pts[:, :3].T).T
|
|
uv = uv_h[:, :2] / uv_h[:, -1:]
|
|
|
|
if img_size is not None:
|
|
uv[:, 0] = np.clip(uv[:, 0], 0, img_size[0])
|
|
uv[:, 1] = np.clip(uv[:, 1], 0, img_size[1])
|
|
|
|
return uv
|
|
|
|
|
|
def get_grid_multipleheight() -> np.ndarray:
|
|
|
|
ar_grid_step = 0.3
|
|
ar_grid_num_x = 7
|
|
ar_grid_num_y = 4
|
|
ar_grid_num_z = 7
|
|
ar_grid_z_offset = 1.8
|
|
ar_grid_y_offset = 0
|
|
|
|
ar_grid_x_pos = np.arange(0, ar_grid_num_x)-(ar_grid_num_x-1)/2
|
|
ar_grid_x_pos *= ar_grid_step
|
|
|
|
ar_grid_y_pos = np.arange(0, ar_grid_num_y)-(ar_grid_num_y-1)/2
|
|
ar_grid_y_pos *= ar_grid_step
|
|
ar_grid_y_pos += ar_grid_y_offset
|
|
|
|
ar_grid_z_pos = np.arange(0, ar_grid_num_z).astype(float)
|
|
ar_grid_z_pos *= ar_grid_step
|
|
ar_grid_z_pos += ar_grid_z_offset
|
|
|
|
xx, yy, zz = np.meshgrid(ar_grid_x_pos, ar_grid_y_pos, ar_grid_z_pos)
|
|
ones = np.ones(xx.shape[0]*xx.shape[1]*xx.shape[2])
|
|
eye_coords = np.concatenate([c.reshape(-1, 1)
|
|
for c in (xx, yy, zz, ones)], axis=-1)
|
|
return eye_coords
|
|
|
|
|
|
|
|
eye_coords_glob = get_grid_multipleheight()
|
|
|
|
|
|
def reprojection_error(
|
|
R_est: np.ndarray, t_est: np.ndarray, R_gt: np.ndarray, t_gt: np.ndarray, K: np.ndarray,
|
|
W: int, H: int) -> float:
|
|
eye_coords = eye_coords_glob
|
|
|
|
|
|
uv_gt = project(eye_coords, K, (W, H))
|
|
|
|
|
|
cam2w_est = np.eye(4)
|
|
if not np.isnan(R_est).any():
|
|
cam2w_est[:3, :3] = R_est
|
|
cam2w_est[:3, -1] = t_est
|
|
cam2w_gt = np.eye(4)
|
|
cam2w_gt[:3, :3] = R_gt
|
|
cam2w_gt[:3, -1] = t_gt
|
|
|
|
|
|
eyes_residual = (np.linalg.inv(cam2w_est) @ cam2w_gt @ eye_coords.T).T
|
|
uv_pred = project(eyes_residual, K, (W, H))
|
|
|
|
|
|
repr_err = np.linalg.norm(uv_gt - uv_pred, ord=2, axis=1)
|
|
mean_repr_err = float(repr_err.mean().item())
|
|
return mean_repr_err
|
|
|