|
--- |
|
license: mit |
|
--- |
|
|
|
<p align="center"> |
|
<img src="./asset/XMAiNframe.png" width="560px" alt="logo"> |
|
</p> |
|
|
|
<div align="center"> |
|
|
|
# XMAiNframe: A Large Language Model for Mainframe Modernization |
|
</div> |
|
|
|
## Introduction |
|
|
|
We are introducing **XMAiNframe**, a state-of-the-art large language model (LLM) specifically designed with knowledge of mainframe legacy systems and COBOL codebases. XMAiNframe is built on top of DeepSeek-Coder 7B and is available with 7B and 10.5B parameters. |
|
Additionally, we present [MainframeBench](https://huggingface.co/datasets/Fsoft-AIC/MainframeBench), a comprehensive benchmark for assessing mainframe knowledge, including multiple-choice questions, question answering, and COBOL code summarization. Our empirical evaluations demonstrate that XMAiNframe consistently outperforms existing state-of-the-art LLMs across these tasks. Specifically, XMAiNframe achieves 30% higher accuracy than DeepSeek-Coder on multiple-choice questions, doubles the BLEU score of Mixtral-Instruct 8x7B on question answering, and scores six times higher than GPT-3.5 on COBOL summarization. Our work highlights the potential of XMAiNframe to drive significant advancements in managing and modernizing legacy systems, thereby enhancing productivity and saving time for software developers. |
|
|
|
|
|
## Model Versions |
|
|
|
We release XMAiNframe with 7B and 10.5B parameters, including base and instruct models, to the public. XMAiNframe 10.5B is expanded from DeepSeek-Coder 7B by the depth up-scaling method without introducing additional modules or dynamic expert selection methods. |
|
|
|
<div align="center"> |
|
|
|
| **Model** | **Download** | |
|
| :-----------------------------: | :----------------------------------------------------------: | |
|
| XMAiNframe-base-7b | [🤗 HuggingFace](https://https://huggingface.co/Fsoft-AIC/XMAiNframe-base-7b/) | |
|
| XMAiNframe-instruct-7b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-7b) | |
|
| XMAiNframe-base-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-base-10.5b) | |
|
| XMAiNframe-instruct-10.5b | [🤗 HuggingFace](https://huggingface.co/Fsoft-AIC/XMAiNframe-instruct-10.5b) | |
|
|
|
</div> |
|
|
|
|
|
## Quickstart |
|
|
|
Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents. |
|
|
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
tokenizer = AutoTokenizer.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-7b") |
|
model = AutoModelForCausalLM.from_pretrained("Fsoft-AIC/XMAiNframe-instruct-7b") |
|
messages=[ |
|
{'from':'system', 'value': "You are a helpful assistant"}, |
|
{'from': 'human', 'value': 'What is the future of Mainframe?'} |
|
] |
|
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) |
|
|
|
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) |
|
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) |
|
``` |
|
|
|
## Additional Information |
|
### Other Resources: |
|
- Github: https://github.com/FSoft-AI4Code/XMainframe |
|
- Paper: https://arxiv.org/abs/2408.04660 |
|
|
|
|
|
### License |
|
[MIT License](LICENSE) |
|
|
|
### Citation Information |
|
More details can be found in our [paper](https://arxiv.org/abs/2408.04660). |
|
|
|
If you're using XMAiNframe, please cite using this BibTeX: |
|
``` |
|
@misc{dau2024xmainframelargelanguagemodel, |
|
title={XMainframe: A Large Language Model for Mainframe Modernization}, |
|
author={Anh T. V. Dau and Hieu Trung Dao and Anh Tuan Nguyen and Hieu Trung Tran and Phong X. Nguyen and Nghi D. Q. Bui}, |
|
year={2024}, |
|
eprint={2408.04660}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2408.04660}, |
|
} |
|
``` |
|
|
|
# Contact us |
|
If you have any questions, comments or suggestions, please do not hesitate to contact us. |
|
- Website: [fpt-aicenter](https://www.fpt-aicenter.com/ai-residency/) |
|
- Email: support.ailab@fpt.com |
|
|