metadata
license: mit
language:
- en
base_model:
- THUDM/CogVideoX-2b
- Fudan-FUXI/LiFT-Critic-40b-lora
pipeline_tag: text-to-video
LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment
CogVideoX-1.5-LiFT is the fine-tuned version of CogVideoX-1.5 using our reward-weighted learning method.
π Quick Start
We provide cli_demo.py
for users to quick start.
import argparse
from typing import Literal
import torch
from diffusers import (
CogVideoXPipeline,
CogVideoXDDIMScheduler,
CogVideoXDPMScheduler,
)
from diffusers.utils import export_to_video, load_image, load_video
def generate_video(
prompt: str,
model_path: str,
lora_path: str = None,
lora_rank: int = 128,
output_path: str = "./output.mp4",
image_or_video_path: str = "",
num_inference_steps: int = 50,
guidance_scale: float = 6.0,
num_videos_per_prompt: int = 1,
dtype: torch.dtype = torch.bfloat16,
generate_type: str = Literal["t2v", "i2v", "v2v"],
seed: int = 42,
):
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype)
if lora_path:
pipe.load_lora_weights(lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test")
pipe.fuse_lora(lora_scale=1 / lora_rank, components=['transformer'])
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.to("cuda")
video_generate = pipe(
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
num_inference_steps=num_inference_steps,
num_frames=49,
use_dynamic_cfg=True,
guidance_scale=guidance_scale,
generator=torch.Generator().manual_seed(seed),
).frames[0]
export_to_video(video_generate, output_path, fps=8)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
parser.add_argument(
"--model_path", type=str, default='Fudan-FUXI/CogVideoX-2B-LiFT', help="The path of the pre-trained model to be used"
)
parser.add_argument(
"--prompt", type=str, default="A girl riding a bike.", help="The description of the video to be generated"
)
parser.add_argument(
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
)
parser.add_argument(
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
)
parser.add_argument(
"--dtype", type=str, default="float16", help="The data type for computation (e.g., 'float16' or 'bfloat16')"
)
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
args = parser.parse_args()
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
generate_video(
prompt=args.prompt,
model_path=args.model_path,
output_path=args.output_path,
num_inference_steps=args.num_inference_steps,
dtype=dtype,
generate_type='t2v',
seed=args.seed,
)
Running the Script:
$ python cli_demo.py --prompt "a girl riding a bike." --model_path Fudan-FUXI/CogVideoX-2B-LiFT
ποΈ Citation
If you find our work helpful, please cite our paper.
@article{LiFT,
title={LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment.},
author={Wang, Yibin and Tan, Zhiyu, and Wang, Junyan and Yang, Xiaomeng and Jin, Cheng and Li, Hao},
journal={arXiv preprint arXiv:2412.04814},
year={2024}
}