File size: 14,156 Bytes
a5e2656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
---
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
base_model: firqaaa/indo-sentence-bert-large
metrics:
- accuracy
widget:
- text: gamenya seru bagus paket:gamenya seru bagus paket worth it gak lag mudah mainnya
    tugas hadiah bagus modenya sayangnya game kadang ngebug gapapa kasih
- text: tolong perbaiki analog nya pengaturan posisi:tolong perbaiki analog nya pengaturan
    posisi berpindah pindah
- text: visualisasi bagus segi graphic:visualisasi bagus segi graphic bagus ya game
    cocok sih mantra nya banyakin contoh mantra penghilang
- text: jaringan udah bagus game jaringan nya bagus:game nya udah bagus jaringan game
    nya bermasalah jaringan udah bagus game jaringan nya bagus mohon nambahin karakter
- text: kali game stuk loading server pakai jaringan:game bagus cma kendala kali game
    stuk loading server pakai jaringan wifi masuk jaringan jaringan bermasalah main
    game online lancar game susah akses tolong diperbaiki supercell detik bermain
    coc lancar masuk kendala
pipeline_tag: text-classification
inference: false
model-index:
- name: SetFit Polarity Model with firqaaa/indo-sentence-bert-large
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.8677536231884058
      name: Accuracy
---

# SetFit Polarity Model with firqaaa/indo-sentence-bert-large

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [firqaaa/indo-sentence-bert-large](https://huggingface.co/firqaaa/indo-sentence-bert-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

This model was trained within the context of a larger system for ABSA, which looks like so:

1. Use a spaCy model to select possible aspect span candidates.
2. Use a SetFit model to filter these possible aspect span candidates.
3. **Use this SetFit model to classify the filtered aspect span candidates.**

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [firqaaa/indo-sentence-bert-large](https://huggingface.co/firqaaa/indo-sentence-bert-large)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **spaCy Model:** id_core_news_trf
- **SetFitABSA Aspect Model:** [Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-aspect](https://huggingface.co/Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-aspect)
- **SetFitABSA Polarity Model:** [Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-polarity](https://huggingface.co/Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-polarity)
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label   | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|:--------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| negatif | <ul><li>'seru tolong diperbaiki pencarian lawan bermain ketemu player:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'bugnya nakal banget y:bugnya nakal banget y coc cr aja sukanya ngebug pas match suka hitam match relog kalo udah relog lawan udah 1 2 mahkota kecewa sih bintang nya 1 aja bug nya diurus bintang lawannya kadang g setara levelnya dahlah gk suka banget kalo main 2 vs 2 temen suka banget afk coba fitur report'</li><li>'kadang g setara levelnya dahlah gk suka:bugnya nakal banget y coc cr aja sukanya ngebug pas match suka hitam match relog kalo udah relog lawan udah 1 2 mahkota kecewa sih bintang nya 1 aja bug nya diurus bintang lawannya kadang g setara levelnya dahlah gk suka banget kalo main 2 vs 2 temen suka banget afk coba fitur report'</li></ul> |
| positif | <ul><li>'kapada supercell game nya bagus seru:kapada supercell game nya bagus seru tolong diperbaiki pencarian lawan bermain ketemu player trophy mahkotanya jaraknya dapet berpengaruh peleton akun perbedaan level'</li><li>'fairrrr mending uninstall gamenya maen game yg:overall gamenya bagus pencarian match dikasih musuh yg levelnya levelku yg pertandingan fair menganggu kenyamanan pemainnya kalo nyariin musuh gapapa nyarinya kasih yg fair levelnya gaush buru buru ngasih yg gak fairrrr pas arena 4 udh dikasih musuh yg pletonnya 2 yg level 11 gak fairrrr mending uninstall gamenya maen game yg yg org gak fairr'</li><li>'gameplay menyenangkan pemain afk:gameplay menyenangkan pemain afk pertengahan menyerah 2vs2 mode mengganggu tolong tambahkan fitur lapor pemain'</li></ul>                                                                                                                         |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8678   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import AbsaModel

# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
    "Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-aspect",
    "Funnyworld1412/ABSA_indo-sentence-bert-large_MiniLM-L6-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 3   | 28.3626 | 83  |

| Label   | Training Sample Count |
|:--------|:----------------------|
| negatif | 738                   |
| positif | 528                   |

### Training Hyperparameters
- batch_size: (4, 4)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0003 | 1    | 0.2752        | -               |
| 0.0158 | 50   | 0.2227        | -               |
| 0.0316 | 100  | 0.2989        | -               |
| 0.0474 | 150  | 0.2169        | -               |
| 0.0632 | 200  | 0.2081        | -               |
| 0.0790 | 250  | 0.0653        | -               |
| 0.0948 | 300  | 0.3878        | -               |
| 0.1106 | 350  | 0.0675        | -               |
| 0.1264 | 400  | 0.0096        | -               |
| 0.1422 | 450  | 0.2128        | -               |
| 0.1580 | 500  | 0.028         | -               |
| 0.1738 | 550  | 0.177         | -               |
| 0.1896 | 600  | 0.006         | -               |
| 0.2054 | 650  | 0.0159        | -               |
| 0.2212 | 700  | 0.2219        | -               |
| 0.2370 | 750  | 0.0085        | -               |
| 0.2528 | 800  | 0.0202        | -               |
| 0.2686 | 850  | 0.0174        | -               |
| 0.2844 | 900  | 0.1191        | -               |
| 0.3002 | 950  | 0.0645        | -               |
| 0.3160 | 1000 | 0.004         | -               |
| 0.3318 | 1050 | 0.0132        | -               |
| 0.3476 | 1100 | 0.0036        | -               |
| 0.3633 | 1150 | 0.0056        | -               |
| 0.3791 | 1200 | 0.0074        | -               |
| 0.3949 | 1250 | 0.0012        | -               |
| 0.4107 | 1300 | 0.0024        | -               |
| 0.4265 | 1350 | 0.0028        | -               |
| 0.4423 | 1400 | 0.0011        | -               |
| 0.4581 | 1450 | 0.1069        | -               |
| 0.4739 | 1500 | 0.0013        | -               |
| 0.4897 | 1550 | 0.0006        | -               |
| 0.5055 | 1600 | 0.0012        | -               |
| 0.5213 | 1650 | 0.1649        | -               |
| 0.5371 | 1700 | 0.0019        | -               |
| 0.5529 | 1750 | 0.0016        | -               |
| 0.5687 | 1800 | 0.2247        | -               |
| 0.5845 | 1850 | 0.0019        | -               |
| 0.6003 | 1900 | 0.0131        | -               |
| 0.6161 | 1950 | 0.0008        | -               |
| 0.6319 | 2000 | 0.0006        | -               |
| 0.6477 | 2050 | 0.0008        | -               |
| 0.6635 | 2100 | 0.0011        | -               |
| 0.6793 | 2150 | 0.1962        | -               |
| 0.6951 | 2200 | 0.0007        | -               |
| 0.7109 | 2250 | 0.0007        | -               |
| 0.7267 | 2300 | 0.0009        | -               |
| 0.7425 | 2350 | 0.0007        | -               |
| 0.7583 | 2400 | 0.0006        | -               |
| 0.7741 | 2450 | 0.0015        | -               |
| 0.7899 | 2500 | 0.0005        | -               |
| 0.8057 | 2550 | 0.0007        | -               |
| 0.8215 | 2600 | 0.0016        | -               |
| 0.8373 | 2650 | 0.0008        | -               |
| 0.8531 | 2700 | 0.0013        | -               |
| 0.8689 | 2750 | 0.0007        | -               |
| 0.8847 | 2800 | 0.0008        | -               |
| 0.9005 | 2850 | 0.0008        | -               |
| 0.9163 | 2900 | 0.0005        | -               |
| 0.9321 | 2950 | 0.0006        | -               |
| 0.9479 | 3000 | 0.0006        | -               |
| 0.9637 | 3050 | 0.0006        | -               |
| 0.9795 | 3100 | 0.0004        | -               |
| 0.9953 | 3150 | 0.0005        | -               |
| 1.0    | 3165 | -             | 0.2012          |

### Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- spaCy: 3.7.5
- Transformers: 4.36.2
- PyTorch: 2.1.2
- Datasets: 2.19.2
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->