metadata
base_model: stabilityai/stable-diffusion-xl-base-1.0
instance_prompt: xcvz
tags:
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
- text-to-image
- diffusers
- lora
inference: false
datasets:
- GAS17/datasetgas
LoRA DreamBooth - GAS17/loragas
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained on the concept prompt:
xcvz
Use this keyword to trigger your custom model in your prompts.
LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Usage
Make sure to upgrade diffusers to >= 0.19.0:
pip install diffusers --upgrade
In addition make sure to install transformers, safetensors, accelerate as well as the invisible watermark:
pip install invisible_watermark transformers accelerate safetensors
To just use the base model, you can run:
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
vae = AutoencoderKL.from_pretrained('madebyollin/sdxl-vae-fp16-fix', torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae, torch_dtype=torch.float16, variant="fp16",
use_safetensors=True
)
# This is where you load your trained weights
pipe.load_lora_weights('GAS17/loragas')
pipe.to("cuda")
prompt = "A majestic xcvz jumping from a big stone at night"
image = pipe(prompt=prompt, num_inference_steps=50).images[0]