metadata
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: deberta-finetuned-answer-polarity-7e
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: answer_pol
split: validation
args: answer_pol
metrics:
- name: Accuracy
type: accuracy
value: 0.9584548104956269
deberta-finetuned-answer-polarity-7e
This model is a fine-tuned version of microsoft/deberta-large on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.2369
- Accuracy: 0.9585
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4752 | 1.0 | 944 | 0.3648 | 0.9140 |
0.5769 | 2.0 | 1888 | 0.3024 | 0.9402 |
0.1312 | 3.0 | 2832 | 0.2369 | 0.9585 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3