GCopoulos's picture
update model card README.md
26d01d1
---
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- f1
model-index:
- name: deberta-finetuned-answer-polarity-warmup-f1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: answer_pol
split: validation
args: answer_pol
metrics:
- name: F1
type: f1
value: 0.8602499021892139
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-finetuned-answer-polarity-warmup-f1
This model is a fine-tuned version of [microsoft/deberta-large](https://huggingface.co/microsoft/deberta-large) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3748
- F1: 0.8602
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 1.0 | 364 | 0.5669 | 0.8303 |
| 0.0791 | 2.0 | 728 | 0.5405 | 0.4630 |
| 0.3408 | 3.0 | 1092 | 0.3748 | 0.8602 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3