metadata
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- f1
model-index:
- name: debertav3-finetuned-answer-polarity-2e6-newdata
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue
type: glue
config: answer_pol
split: validation
args: answer_pol
metrics:
- name: F1
type: f1
value: 0.8526968320709598
debertav3-finetuned-answer-polarity-2e6-newdata
This model is a fine-tuned version of microsoft/deberta-base on the glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.4009
- F1: 0.8527
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
No log | 1.0 | 221 | 1.1820 | 0.2111 |
1.1195 | 2.0 | 442 | 0.7073 | 0.7068 |
0.4953 | 3.0 | 663 | 0.5068 | 0.8311 |
0.4953 | 4.0 | 884 | 0.4326 | 0.8498 |
0.2767 | 5.0 | 1105 | 0.4155 | 0.8553 |
0.2147 | 6.0 | 1326 | 0.4009 | 0.8527 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3